Loading...

Spark plasma sintering of ultrafine YSZ reinforced Cu matrix functionally graded composite

Mirazimi, J ; Sharif University of Technology | 2016

729 Viewed
  1. Type of Document: Article
  2. DOI: 10.1007/s40195-016-0512-0
  3. Publisher: Chinese Society for Metals , 2016
  4. Abstract:
  5. Copper matrix composites have received more attentions as possible candidate for thermal and electrical conductive materials to be used in electrical contact applications. In this study, five-layered Cu/YSZ (yttria-stabilized zirconia) functionally graded material (FGM) and copper matrix composite specimens containing 3 and 5 vol% YSZ particles plus pure Cu specimen were synthesized using powder metallurgy (PM) route and spark plasma sintering (SPS) consolidation process. The microstructural and some physical, mechanical features of all specimens were characterized. Microscopic examinations showed that ultrafine YSZ particles were distributed in the copper matrix almost homogeneously. An appropriate interface was observed at each layer of FGM. The density measurement indicated that the graded structure of the composite could be well densified after the SPS process. The microhardness values of various layers of Cu/ YSZ FGM specimen were gradually altered from 56.3 (pure copper side) to 75.2 HV (Cu-5 vol% YSZ side). The increase of YSZ content resulted in a decrease in electrical conductivity. Additionally, thermal conductivity of Cu/YSZ FGM specimen [308.0 W/(m K)] was determined to be higher than that of the Cu-5 vol% YSZ composite specimen [260.7 W/ (m K)]. Accordingly, it can be concluded that the Cu/YSZ FGM can be a good candidate for the electrical applications, like sliding electrical contacts, where different material characteristics in the same component are required
  6. Keywords:
  7. Composite ; Interface ; Spark plasma sintering (SPS ; Beams and girders ; Composite materials ; Conductive materials ; Copper ; Electric contacts ; Functionally graded materials ; Interfaces (materials) ; Metallic matrix composites ; Microstructure ; Powder metallurgy ; Sintering ; Spark plasma sintering ; Thermal conductivity ; Zirconia ; Consolidation process ; Copper matrix composite ; Electrical applications ; Electrical conductivity ; Functionally graded composites ; Functionally graded material (FGM) ; Material characteristics ; Sliding electrical contacts ; Yttria stabilized zirconia
  8. Source: Acta Metallurgica Sinica (English Letters) ; Volume 29, Issue 12 , 2016 , Pages 1169-1176 ; 10067191 (ISSN)
  9. URL: https://link.springer.com/article/10.1007%2Fs40195-016-0512-0