Loading...

On robust stability of linear time invariant fractional-order systems with real parametric uncertainties

Akbari Moornani, K ; Sharif University of Technology | 2009

581 Viewed
  1. Type of Document: Article
  2. DOI: 10.1016/j.isatra.2009.04.006
  3. Publisher: 2009
  4. Abstract:
  5. In this paper, the robust bounded-input bounded-output stability of a large class of linear time invariant fractional order families of systems with real parametric uncertainties is analyzed. The transfer functions contain polynomials in fractional powers of the Laplace variable s, possibly in combination with exponentials of fractional powers of s. Using the concept of the value set and a generalization of the zero exclusion condition theorem, a theorem to check the robust bounded-input bounded-output stability of these families of systems is presented. An upper cutoff frequency for drawing the value sets is provided as well. Finally, two numerical examples are given to illustrate results obtained by the lemma and theorems presented in the paper. © 2009 ISA
  6. Keywords:
  7. Fractional order systems ; Linear time invariant systems ; Exponentials ; Fractional order ; Fractional order systems ; Fractional power ; Input-bounded ; Large class ; Linear time invariant ; Numerical example ; Output stability ; Real parametric uncertainties ; Real parametric uncertainty ; Robust bounded-input bounded-output stability ; Robust stability ; Value sets ; Cutoff frequency ; Invariance ; Linear systems ; Set theory ; System stability ; Uncertainty analysis ; Real time systems ; Algorithm ; Article ; Artificial neural network ; Reproducibility ; Statistical model ; Linear Models ; Neural Networks (Computer) ; Reproducibility of Results ; Uncertainty
  8. Source: ISA Transactions ; Volume 48, Issue 4 , 2009 , Pages 484-490 ; 00190578 (ISSN)
  9. URL: https://www.sciencedirect.com/science/article/abs/pii/S0019057809000330