Loading...

DNA methylation regulates discrimination of enhancers from promoters through a H3K4me1-H3K4me3 seesaw mechanism

Sharifi Zarchi, A ; Sharif University of Technology

1194 Viewed
  1. Type of Document: Article
  2. DOI: 10.1186/s12864-017-4353-7
  3. Abstract:
  4. Background: DNA methylation at promoters is largely correlated with inhibition of gene expression. However, the role of DNA methylation at enhancers is not fully understood, although a crosstalk with chromatin marks is expected. Actually, there exist contradictory reports about positive and negative correlations between DNA methylation and H3K4me1, a chromatin hallmark of enhancers. Results: We investigated the relationship between DNA methylation and active chromatin marks through genome-wide correlations, and found anti-correlation between H3K4me1 and H3K4me3 enrichment at low and intermediate DNA methylation loci. We hypothesized "seesaw" dynamics between H3K4me1 and H3K4me3 in the low and intermediate DNA methylation range, in which DNA methylation discriminates between enhancers and promoters, marked by H3K4me1 and H3K4me3, respectively. Low methylated regions are H3K4me3 enriched, while those with intermediate DNA methylation levels are progressively H3K4me1 enriched. Additionally, the enrichment of H3K27ac, distinguishing active from primed enhancers, follows a plateau in the lower range of the intermediate DNA methylation level, corresponding to active enhancers, and decreases linearly in the higher range of the intermediate DNA methylation. Thus, the decrease of the DNA methylation switches smoothly the state of the enhancers from a primed to an active state. We summarize these observations into a rule of thumb of one-out-of-three methylation marks: "In each genomic region only one out of these three methylation marks (DNA methylation, H3K4me1, H3K4me3) is high. If it is the DNA methylation, the region is inactive. If it is H3K4me1, the region is an enhancer, and if it is H3K4me3, the region is a promoter". To test our model, we used available genome-wide datasets of H3K4 methyltransferases knockouts. Our analysis suggests that CXXC proteins, as readers of non-methylated CpGs would regulate the "seesaw" mechanism that focuses H3K4me3 to unmethylated sites, while being repulsed from H3K4me1 decorated enhancers and CpG island shores. Conclusions: Our results show that DNA methylation discriminates promoters from enhancers through H3K4me1-H3K4me3 seesaw mechanism, and suggest its possible function in the inheritance of chromatin marks after cell division. Our analyses suggest aberrant formation of promoter-like regions and ectopic transcription of hypomethylated regions of DNA. Such mechanism process can have important implications in biological process in where it has been reported abnormal DNA methylation status such as cancer and aging. © 2017 The Author(s)
  5. Keywords:
  6. Computational epigenomics ; Enhancers ; H3K4me1 ; H3K4me3 ; Histone modifications ; Next generation sequencing ; Promoters ; Histone H3 ; Methyl CpG binding protein ; Methyltransferase ; 3' untranslated region ; Chromatin ; Controlled study ; CpG island ; DNA methylation ; Enhancer region ; Gene control ; Gene expression ; Gene locus ; Genetic correlation ; Genetic regulation ; Histone modification ; Knockout gene ; Mouse embryonic stem cell ; Promoter region ; Transcription initiation site
  7. Source: BMC Genomics ; 2017 , Volume 18, Issue 1 ; 14712164 (ISSN)
  8. URL: https://www.ncbi.nlm.nih.gov/pubmed/29233090