Loading...
Search for: carbon-nanotubes
0.018 seconds
Total 564 records

    Application of Pd-Au Nanoparticles on Carbon Nanotubes Modified Electrode for Electrochemical Determination of Ceftazidime

    , M.Sc. Thesis Sharif University of Technology Salimian, Razieh (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    This present work is an introduction of a new electrochemical sensor toward the determination of biomolecule. A simple electrodeposition method was employed to construct a thin film modifier of palladium–gold nanoparticles (Pd–AuNPs) decorated multi-walled carbon nanotube (MWCNT) on the surface of glassy carbon electrode (GCE). Morphological characterization of the modified electrode was performed by the scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and cyclic voltammetry (CV) techniques. This nanostructured film modified electrode effectively exhibited enhanced properties for the detection of ceftazidime (CFZ). The effects of various experimental variables such... 

    Synthesis of Aligned Carbon Nanotubes and Their Modification with Noble Metallic Nanoparticles as Organic Analytes Biosensors

    , Ph.D. Dissertation Sharif University of Technology Fayazfar, Haniyeh (Author) ; Afshar, Abdollah (Supervisor) ; Dolati, Abolghasem (Supervisor)
    Abstract
    An efficient method has been developed to synthesize well-aligned multi-walled carbon nanotubes (MWCNTs) on a conductive Ta substrate by chemical vapor deposition (CVD). By varying CVD parameters, aligned CNTs (A-MWCNTs) with diameter between 20-100 nm and length of some micrometers with bamboo-like shapes were produced. Free-standing MWCNTs arrays were functionalized and purified through electrochemical oxidation. Then in order to improve the performance, facile template-free electrochemical routes were developed for the shape-selective synthesis of less-common Au nanostructures, including flower, sphere, dendrite, sheet and rod on A-CNTs at room temperature. The results showed that the... 

    Mechanics and Morphology of Single-Walled Carbon Nanotubes

    , Ph.D. Dissertation Sharif University of Technology Delfani, Mohammad Rasoul (Author) ; Mohammadi Shoja, Hossein (Supervisor)
    Abstract
    Vibration is one of the most important factors in design, operation and lifetime of drill strings. There for, investigation of vibrations in drill string, like every other rotary machine, is very important. The main goal of this research is developing a nonlinear model for a drill string system dynamics in an inclined well. Effects of drilling mud flow rate, weight on bit, angular velocity along with viscous damping, on the stability and vibration of a drill string are studied. Dynamic equation of the model is developed considering axial displacement and lateral bending geometric nonlinear coupling. The effect of drilling mud flow is modeled using Paidoussis formulations. Equation of motion... 

    Studies on DBT Removal from Compositional Oil Model Using CNT

    , M.Sc. Thesis Sharif University of Technology Imani, Masoumeh (Author) ; Vossoughi, Manoochehr (Supervisor) ; Aalemzadeh, Iran (Supervisor)
    Abstract
    In this research, carbon nanotubes (CNTs) and CNT coated by titanium dioxide (TiO2) were used as adsorbents for desulfurization. Photocatalytic oxidation by titanium dioxide Degussa P-25 nanoparticles (as photocatalyst) immobilized on a porous and low-density support called “perlite” and CNT/TiO2 was perused. TiO2-coatings were prepared by liquid phase deposition method.This is a wet process for the formation of metal oxide thin films on substrates. The coating of nanotubes with TiO2 was confirmed by IR and EDAX and morphological properties were observed by SEM analysis.The physical properties of adsorbents were determine using BET.Dibenzothiophene (DBT)dissolved in acetonitrile was used as... 

    Comprehensive Study of an Ag@Pt Core–shell Nanoparticles Supported on Carbon Structure in a Proton Exchange Membrane Fuel Cell

    , Ph.D. Dissertation Sharif University of Technology Esfandiari, Ali (Author) ; Kazemeini, Mohammad (Supervisor) ; Bastani, Dariush (Supervisor)
    Abstract
    Core-shell structures of Ag@Pt nanoparticles (NPs) dispersed on Carbon Vulcan XC-72, Multiwalled carbon nanotube and reduced graphene oxide (rGO) support containing different Ag:Pt mass ratios and applied to the oxygen reduction reaction (ORR) in a proton exchange membrane fuel cell (PEMFC) were synthesized by the ultrasonic and reduction treatment method. The morphology of as-prepared catalysts characterized by the high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and induced coupled plasma atomic emission spectroscopy (ICP-OES). The ORR activities and stabilities of catalysts were studied through electrochemical measurements utilizing the Cyclic Voltammetry... 

    Experimental and Theoretical Study of Methane Adsorption on Multiwall Carbon Nano Tubes

    , M.Sc. Thesis Sharif University of Technology Seddighi, Khosro (Author) ; Taghikhani, Vahid (Supervisor) ; Ghotbi, Siroos (Supervisor)
    Abstract
    In this project, theoretical and experimental study of methane adsorption on Multiwall Carbon Nano-Tubes (MWCNT) has been performed. This study has been conducted in the way to achieve a suitable method for methane storage and transportation. To carry out the experiments, the volumetric method was used up to 500 psia at various temperatures of 298.15 K, 303.15 K, 308.15 K. The effect of moisture was also studied at 298.15 K. Also, various adsorption isotherms were used to model the experimental data collected in this work. The results showed that the amount of methane adsorbed on the MWCNT can decrease with increasing the moisture and temperature of the adsorption cell. In order to... 

    Experimental Investigation for Enhancing the Lifetime of Co,Ru/La(γ-Al2O3) Catalyst in Fischer Tropsch Synthesis

    , Ph.D. Dissertation Sharif University of Technology Hemmati Mahmoudi, Mohammad Reza (Author) ; Kazemeini, Mohammad (Supervisor) ; Khorasheh, Farhad (Supervisor) ; Zarkesh, Jamshid (Co-Advisor)
    Abstract
    Fischer-Tropsch synthesis (FTS) is the main part of a Gas to Liquid (GTL) process. In this reaction which shall be done based upon iron or cobalt catalysts, H2 and CO molecules (namely Syngas) transform to long hydrocarbon chains. Regarding all of the advantages of cobalt catalysts in comparison with iron counterparts, Research Institute of Petroleum Industry (RIPI) began investigations since two decade ago. The present catalyst comprised of cobalt as active metal, ruthenium as activity promiter and lanthanum as support (gamma alumina) modifier. By the way, still some areas such as its lifetime duration and deactivation needs to be improved by complimentary researches. The present... 

    Multiscale Simulation of Carbon Nanotubes Using Coupled Atomistic- Continuum Modeling

    , M.Sc. Thesis Sharif University of Technology Motezaker, Mohsen (Author) ; Khoei, Amir Reza (Supervisor) ; Jahanshahi, Mohsen (Supervisor)
    Abstract
    Carbon nanotubes are cylinders in Nano scale formed of carbon atoms with covalent bonds that contain a significant electrical and mechanical features. Carbon nanotubes are divided into two main types: multi-walled carbon nanotubes (MWCNTs) and single walled carbon nanotubes (SWCNTs). A SWCNT is a rolled graphene sheet (graphene is in fact a single sheet of graphite). SWCNTs has lately been considered as one of most interesting research cases. The reason why researchers have been fond of investigating about graphene has been its unconventional quantum hall effects, high room-temperature electrical conductivity and its mechanical stability despite of being composed of single layer atom... 

    Multi Scale Modeling of Carbon Nano Structures Using Brenner Potential Function

    , M.Sc. Thesis Sharif University of Technology Ziapour, Rouzbeh (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    Due to high cost and ineffectiveness of molecular models a new method for coupling continuum models with molecular models is used. In this method, the continuum and molecular domains are overlapped. Comparing the results obtained from the concurrent simulations and molecular dynamic simulations proves the accuracy of the method used. The method is used for modeling single layered graphene sheets, stress contours are presented for multiscale and both static and dynamic simulations of concurrent. For multiscale simulations two different carbon nano tubes are investigated and strees-bond angle and strees-bond length are also presented  

    Modeling of Carbon Nanotubes with Molecular Dynamics and Application of Parallel Processing

    , M.Sc. Thesis Sharif University of Technology Banihashemi, Parsa (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    Nanotechnology is the knowledge of future. Some people Compare the initialization of nanotechnology to the beginning of the industrial revolution. Experimental modeling of nano-materials can be so expensive, but, with the aid of computational nanomechanics, we can perform less experiments and more numerical simulation. In the past decades, applications of nanotubes in medicine, electrical engineering, mechanical engineering, building nano sensors, nano engines and etc caused a pervasive study on the mechanics of carbon nanotubes. In this Thesis, the writer has implemented the Tersoff interatomic potential to perform molecular dynamics simulations of carbon nanotubes. In this work, tensile... 

    Multiscale Modeling of Carbon Nano Structures Using Tersoff Potential Function

    , M.Sc. Thesis Sharif University of Technology Najjari, Alireza (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    During the last decade, thanks to a combination of exploding computational power and improved physical insight into material behavior, continuum and atomistic simulations improved greatly. Both classes of methods are now used to solve problems, which are more complicated than ever with greater accuracy than ever before. Nevertheless, there still exist problems for which neither method alone is sufficient. In general, atomistic simulations cannot be used for such length scales due to the restrictions on the number of atoms that can be simulated, along with the time scales, which they can be simulated for. In contrast, continuum simulations tend to fail at the atomic scale, for example due to... 

    Neutral Spin Collective Mode in Carbon Nanotubes

    , M.Sc. Thesis Sharif University of Technology Sayyad, Sharareh (Author) ; Jafari, Akbar (Supervisor)
    Abstract
    In 2002 Baskaran and Jafari published an article that was about a spin-1 collective mode. Similarity between carbon nanotubes and graphene was a motivation for working on this project, in order to find another spin mode by considering random phase approximation as a simple way of finding collective motion of a physical systems. Moreover rolling graphene sheet induce diffrent physical properties as a result of chiral axis . In this project we focus only on achiral nanotubes and at last find two collective modes in this structures  

    Evaluation of Material Properties of Short Carbon Nanotube-Based Composites Using Nonlocal ElasticityTheory

    , M.Sc. Thesis Sharif University of Technology Amelirad, Omid (Author) ; Naghdabadi, Reza (Supervisor)
    Abstract
    Classical theory of elasticity, which is founded upon results of mechanical experiments on the large scale materials, has reasonable results in predicting mechanical properties. The basic idea in this theory is that stress at a point of the material is only a function of the local strain and it is independent of the nonlocal strains. Therefore, the size of the material does not play any role in analyzing mechanical behavior of materials using this theory. However, results from experiments and atomic simulations have shown that in nano scale materials, such as carbon nanotubes (CNTs) and their composites, mechanical properties are strongly dependent on the size parameters of these materials.... 

    Formulation and Investigation of Thermal Behavior and Flexural Properties of PMMA Denture base Reinforced with Modified Nanoparticles m-HAP and m-MWCNTs

    , M.Sc. Thesis Sharif University of Technology Shahkar, Lachin (Author) ; Nemati, Ali (Supervisor) ; Malek Khachatourian, Adrineh (Supervisor)
    Abstract
    This study investigates the effect of adding hydroxyapatite nanoparticles and multi-walled carbon nanotubes in pure and modified form on the flexural properties and hardness of denture base Polymethyl Methacrylate. Polymethyl Methacrylate (PMMA) is still the most common denture base material. In fact, the mechanical properties of this resin have played a significant role in expanding its use in dentistry. But in the long-term use of resins, defects such as low resistance to crack growth, low flexural strength and brittleness can be seen. In fact, flexural fatigue occurs as a result of repeated flexural stresses, and it can be described as the main reason for crack growth and propagation in... 

    Design and Analysis of Nano Ball Bearing

    , M.Sc. Thesis Sharif University of Technology Naseiri Sarvi, Masuod (Author) ; Ahmadian, Mohammad Taghi (Supervisor)
    Abstract
    Nowadays, science of nano technology has been growing quickly in the past decade. Scientists implemented this technology in bioengineering, electronics and medicine extensively. Nano scale engineering is one of the interests of researchers, nano bearing as a nano scale structure and as an important part of nano machining plays an important role in micro and nano devices. The role of nano bearing is to decrease energy dissipation and increase the efficiency of nano machines. The main purpose of this study is to design and analyze an optimized nano ball bearing. In this regard, a new spherical super element is designed and presented. This super element is implemented in simulating the... 

    Design of Injectable Hydrogel Scaffold based on Smart Polymer in Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Mozhdehbakhsh Mofrad, Yasaman (Author) ; Shamloo, Amir (Supervisor)
    Abstract
    Nerve damage is one of the factors affecting the quality of life of patients. The nervous system does not have the ability to repair large injuries, and autologous transplantation, which is the standard treatment method for nerve injuries, is faced with a shortage of donors and a decrease in the function of the donor site. Tissue engineering hydrogels, due to their similarity to the natural tissue of the stomatal body, are a hope for the repair of nerve tissue. In this research, an injectable, minimally invasive and temperature-sensitive hydrogel based on chitosan-etaglycerophosphate-sodium hydrogen carbonate salt or trisodium phosphate salt containing aligned nanofibers made of gelatin and... 

    Computer Simulation of Coiled Carbon Nanotubes Deformation By Molecular Dynamics Approach

    , M.Sc. Thesis Sharif University of Technology Shahini, Ehsan (Author) ; Karimi Taheri, Ali (Supervisor)
    Abstract
    A Coiled Carbon Nanotube (CCNT) can be geometrically viewed as a graphene sheet whose rolled and twisted to form a helically coiled nanotube. It is the strongest material ever measured with strengthexceeding more than hundred times of steel.The strength of a CCNT iscritically influenced by temperature, tube diameter, strain rate and pitch angle. In this study,a Molecular Dynamics (MD) simulationis performed to understand the effect of temperature, strain rate, tube diameter and pitch angle on the mechanical properties of CCNTs. Results indicate thatexisting the stone-wales defects is necessaryfor thermodynamic stability of CCNTs.According to the stress-strain curves it was observed thatyield... 

    Simulation of Water Inside Carbon Nanotubes

    , Ph.D. Dissertation Sharif University of Technology Sadeghi Hassanabadi, Mohsen (Author) ; Parsafar, Gholam Abass (Supervisor)
    Abstract
    This thesis presents a research on the physical behavior of water inside carbon nanotubes (CNTs). Molecular simulations are carried out using the Monte Carlo method in the canonical and grand canonical ensembles. Due to the difference between the inter-molecular forces in the axial and radial directions, the anisotropic pressure tensor is calculated for water confined inside the CNTs with the diameters of 0.88, 1.08, 1.28, and 1.48 nm at different densities using the Monte Carlo simulations. Using the assumption of effective extended Lennard-Jones interactions between the nearest neighbors, a set of new equations of state for water confined inside the CNTs is derived and shown to be... 

    Molecular Dynamics Simulation of Nano-Robot Motion in Nano-Scale Flows

    , M.Sc. Thesis Sharif University of Technology Khaledi-Alidusti, Rasool (Author) ; Abbaspour, Madjid (Supervisor) ; Darbandi, Massoud (Supervisor)
    Abstract
    There is a need to achieve a capability for detailed modeling of the physical processes nano-robots at nano-scales that is driven by the growing demands of nanotechnology.. This is regime where behavior runs contrary to the familiar macroscopic world; optimized engineering design may well benefit from insight gained by emulating some of the multitude of architectures and mechanisms to be found in the biological world. Despite the fact that micro-robotics has long captured the imagination, practical implementations are only now starting to become feasible. One class of nano-robot with potential medical applications was considered that made of single wall carbon nanotube; however, long before... 

    Simulation of Fluid Flow in Nonstraight Nanochannels

    , M.Sc. Thesis Sharif University of Technology Kargar, Sajad (Author) ; Mousavi, Ali (Supervisor)
    Abstract
    Understanding the flow of liquids and particularly water in nanochannels is important for scientific and technological applications, such as for filtration and drug delivery. In this study, we perform molecular dynamics simulations to investigate the transfer of single-file water molecules across straight or nonstraight single-walled carbon nanotubes (SWCNTs). In contrast with the macroscopic scenario, the nonstraight nanostructure can increase the water permeation. Remarkably, compared with the straight SWCNT, the nonstraight SWCNT with the minimal bending angle of 30° in the simulations can enhance the water transport up to 3.9 times. Also increasing length and diameter of carbon nanotubes...