Loading...
Search for: cooling-rate
0.022 seconds
Total 48 records

    Physical Modeling of Microstructure in Gray Cast Iron

    , M.Sc. Thesis Sharif University of Technology Jabbari Behnam, Mir Masoud (Author) ; Davami, Parviz (Supervisor) ; Varahram, Naser (Supervisor)
    Abstract
    The aim of this project is simulation of microstructure and prediction of microstructural length scales in gray cast iron. To attain this, the Fourier heat transfer equations have been solved in a simple domain by FDM (Finite Difference Method), and both thermal distribution and cooling rate were obtained. By coupling experimental results and numerical methods, a model developed for predicting primary and secondary dendrite arm spacing, thickness of eutectoid layers and graphite, and fraction of graphite, cementite and austenite. Besides this model predicts the ultimate tensile strength and Hardness Brinel. Another approach in this project is a new and simple computational method for... 

    Effect of Nitrogen Addition on the Microstructure and Mechanical Properties of a Pearlitic Matrix Gray Cast Iron

    , M.Sc. Thesis Sharif University of Technology Kamoori Yousefabad, Elham (Author) ; Davami, Parviz (Supervisor)
    Abstract
    Gray Cast Irons are the most important engineering Cast Irons. Gray color of fracture surface and morphology of graphite flakes are the reasons of this naming. Gray iron is relatively cheap with easy production; because of wide chemical composition range rather other cast irons. Furthermore, shrinkage and feeding in the casts from gray iron, besides surface finishing by machining are easy. The other properties of gray iron are resistance against sliding wear, high thermal conduction coefficient, low module of elasticity and thermally shock resistance. In this research, the effects of added nitrogen as an alloying element and cooling rate on microstructure, hardness and tensile properties of... 

    Investigation on the Effect of Cooling Rate on the Solidification Behavior and Microstructure of Al 713 alloy using Thermal Analysis Technique

    , M.Sc. Thesis Sharif University of Technology Abbasi, Mohammad Hossein (Author) ; Varahram, Nasser (Supervisor)
    Abstract
    Considering the limited number of works on investigation of solidification characteristics of Al-Zn-Mg-Cu cast alloys as well as the applications of this alloy system in aerospace industries, the solidification conditions of Al 713 alloy were investigated in this study. In order to achieve this goal, a number of experiments were designed and conducted including quantometry, thermal analysis, metallography and hardness measurements. In this thesis, effects of cooling rate on secondary dendritic arms spacing as well as solidification parameters including nucleation temperature, solidification time and temperature range, dendrite coherency point and formation temperature of intermetallic... 

    Effect of Grain Refining, Cooling Rate and Modification on Shrinkage Porosities in A356 Aluminum Alloy

    , M.Sc. Thesis Sharif University of Technology Hajizadeh Bidgoli, Ali (Author) ; Varahram, Naser (Supervisor)
    Abstract
    In this study, the influence of eutectic modification, grain refining and cooling rate on amount of shrinkage porosity in aluminium A356 alloy were investigated. Modification process for changing the morphology of eutectic silicon from needle like to fibrous like, use in aluminium – silicon alloys. This process often leads to increasing porosity in melt and affect harmfully on mechanical properties. For studying shrinkage porosity, the melt degassed completely to minimizing amount of gas in the melt. For modification, strontium in Al-10Sr master alloy and sodium in NaF salt used and for grain refining Al-10Ti and Al-5Ti-1B master alloys used. To study the effect of cooling rate, three mold... 

    Investigation on the Influence of Cooling Rate on Microstructure of CuCr25% Melt-spun Alloy

    , M.Sc. Thesis Sharif University of Technology Nadi Mobarakeh, Elham (Author) ; Varahram, Nasser (Supervisor) ; Davami, Parviz (Supervisor)
    Abstract
    The Cu-Cr10% ingots were prepared in induction furnace and these ingots were used to prepare CuCr25% in VAR. The percentages of elements were checked by chemical analysis. The ingots were divided to slices with 20gr mass and these slices were put in quartz tubes. The quartz tubes were assembled in melt spinning machine and the ribbons were quenched onto a rotating copper wheel. Three different wheel speeds, 8, 16, 36 m/s were chosen. The microstructure of the ribbons was examined using a scanning electron microscopy (SEM). The relationship between wheel speed and thickness of the ribbons were compared with mathematical modeling. The disk of ribbons with thickness of 0.5mm and radius of 5mm... 

    Experimental Study and Finite Element Modeling of the Effect of Microstructure on Fracture Behavior and Fracture Load Prediction of Solder Joints

    , M.Sc. Thesis Sharif University of Technology Mohammadi Amiri, Mostafa (Author) ; Farrahi, Gholamhossein (Supervisor) ; Nourani, Amir (Supervisor)
    Abstract
    The critical strain energy release rate for the solder joint fracture was measured as a function of cooling rate, time above liquidus (TAL) and soldering temperature. The specimens were prepared at 4 different levels of cooling rate, 3 varying levels of TAL, and 3 soldering temperature levels. Then, experiments were designed using the Taguchi method. Fracture tests were performed under bending at a strain rates of 10-5 and 0.5 s-1 and mode I loading conditions. It was found that the effect of soldering temperature insignificant on the Jci, but the cooling rate and the TAL due to their many effects were also studied by their interaction effects. It was observed that at the cooling rate of... 

    Effect of Chemical Composition on Atomic Structure and Mechanical Properties of Mg-Zn Glass Alloys Using Molecular Dynamics Simulation

    , M.Sc. Thesis Sharif University of Technology Asl Roosta, Pouneh (Author) ; Tavakoli, Rohollah (Supervisor)
    Abstract
    In this research, Mg-Zn bulk metallic glasses have been investigated using molecular dynamics simulation. In order to study the structure of this alloy, coordination number, short and medium order of chemical range, Voronoi analysis, glass conversion temperature and atomic pair distribution function have been used. According to the results, the full icosahedral structure with IS connection type in comparison with other structures has an essential role in the stability of the system during cooling and creating medium-scale areas. The results show that the ability to form glass depends on the chemical composition and cooling rate. In this research, the cooling rate is considered to be 1011 K/s... 

    Static Melt Crystallizer Simulation and Design with CFD

    , M.Sc. Thesis Sharif University of Technology Karimzadeh Sureshjani, Hamed (Author) ; Farhadi, Fathollah (Supervisor) ; Pishvaei, Mahmood Reza (Supervisor)
    Abstract
    Layer melt crystallization is one of the most attractive and productive separation methods in the chemical industry. One of the most important coal tar components, which is present in concentration between 10 to 12% is naphthalene. One of the most commonly used techniques for producing naphthalene crystallization. In this thesis, the layer melt crystallization in a mixture of naphthalene and benzothiophene has been investigated using computational fluid dynamics. The simulation of crystallization was performed in Comsol Multiphisics version 5.6 and the thickness of the crystal layer was obtained according to the time. At first, simulation results were verified with the labroratory results of... 

    The Effect of Cooling Rate and Heat Treatment on An Al-4.5% Cu Alloy

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Hesam (Author) ; Varahram, Naser (Supervisor)
    Abstract
    Al-4.5% Cu alloy, an age-hardenable alloy, is an important alloy in industry due to such unique characteristics as high strength-to-weight ratio and considerable strength at elevated temperatures. In this study, the aim was to evaluate the combined effect of cooling rate and heat treatment on an A206 alloy having more impurities—especially iron—than the nominal specifications. To this end, the melt was poured in a five-step mold. Afterwards, each step was subjected to T4 and T6 treatments in order to study the changes compared to the as-cast samples. Ultimate tensile strength, yield strength, elongation, and grain size were determined by using tensile tests and optical microscopy,... 

    Simulation of the Effect of Cooling Rate and Chemical Composition on the Atomic Structure of Bulk Metallic Glass Iron-Phosphorus and Nickel-Phosphorus

    , M.Sc. Thesis Sharif University of Technology Hosseinzadeh, Danial (Author) ; Tavakoli, Rouhollah (Supervisor)
    Abstract
    bulk metallic glass Unlike metal materials that have a crystalline structure, amorphous glass is an amorphous material with an irregular atomic structure that simultaneously has the same physical properties as metals. Due to the absence of crystal defects such as dislocation and grain boundaries, these materials show unique mechanical properties such as high strength and elastic strain, abrasion resistance and proper corrosion. However, their plastic deformation is heterogeneous, concentrated, and accompanied by sudden failure. Unlike metals, these materials do not have a long-range crystalline order, and their atomic structure includes short-range and mid-range order. The short-range order... 

    Design of a novel HSLA steel with a combination of high strength (140-160 ksi) and excellent toughness

    , Article International Journal of Materials Research ; Volume 112, Issue 10 , 2021 , Pages 800-811 ; 18625282 (ISSN) Nezhad, M. S. A ; Ghazvinian, S ; Amirsalehi, M ; Momeni, A ; Sharif University of Technology
    Walter de Gruyter GmbH  2021
    Abstract
    Three steels were designed based on HSLA-100 with additional levels of Mn, Ni, Cr and Cu. The steels were prepared by controlled rolling and tempered at temperatures in range of 550-700°C. The continuous cooling time curves were shifted to longer times and lower temperatures with the increased tendency for the formation of martensite at lower cooling rates. The microstructures revealed that controlled rolling results in austenite with uniform fine grain structure. The steel with the highest amount of Mn showed the greatest strength after tempering at 750 °C. The top strength was attributed to the formation of Cu-rich particles. The steel with 1.03 wt.% Mn, tempered at 650 °C exhibited the... 

    The effects of homogenization time and cooling environment on microstructure and transformation temperatures of Ni-42.5wt%Ti-7.5wt%Cu alloy

    , Article Defect and Diffusion Forum ; Volume 297-301 , 2010 , Pages 344-350 ; 10120386 (ISSN); 3908451809 (ISBN); 9783908451808 (ISBN) Omrani, E ; Shokuhfar, A ; Etaati, A ; Dorri M., A ; Saatian, A ; Sharif University of Technology
    Trans Tech Publications Ltd  2010
    Abstract
    The present paper deals with different effects of homogenization time and cooling environment on Ni-42.5wt%Ti-7.5wt%Cu alloy. The alloy was prepared by vacuum arc melting. Afterwards, three homogenization times (half, one and two hour) and three cooling environments (water, air and furnace) at 1373 K were selected. Optical and Scanning Electron Microscopic methods, EDX, DSC and hardness tests have been used to evaluate the microstructure, transformation temperatures and hardness. Results indicate that specimens that were cooled in air are super-saturated. Also, the microstructure from furnace cooling has many disparities with the other cooling environments' microstructure and two types of... 

    Critical ambient pressure and critical cooling rate in optomechanics of electromagnetically levitated nanoparticles

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 38, Issue 12 , 2021 , Pages 3652-3662 ; 07403224 (ISSN) Jazayeri, A. M ; Sharif University of Technology
    The Optical Society  2021
    Abstract
    The concept of critical ambient pressure is introduced in this paper. The particle escapes from its trap when the ambient pressure becomes comparable with or smaller than a critical value, even if the particle motion is cooled by one of the feedback cooling (or cavity cooling) schemes realized so far. The critical ambient pressure may be so small that it is not a limiting factor in ground-state cooling, but critical feedback cooling rates, which are also introduced in this paper, are limiting factors. The particle escapes from its trap if any of the feedback cooling rates (corresponding to the components of the particle motion) becomes comparable with or larger than its critical value. The... 

    Role of the nucleating agent masterbatch carrier resin in the nonisothermal crystallization kinetics of polypropylene

    , Article Polymer Journal ; Volume 54, Issue 9 , 2022 , Pages 1127-1132 ; 00323896 (ISSN) Shokrollahi, M ; Marouf, B. T ; Bagheri, R ; Sharif University of Technology
    Springer Nature  2022
    Abstract
    The effect of the nucleating agent masterbatch carrier resin on the nonisothermal crystallization of a pipe-grade polypropylene block copolymer was investigated at three different cooling rates using differential scanning calorimetry (DSC). Bis(3,4-dimethylibenzylidene) sorbitol (DMDBS), a well-known, third-generation sorbitol derivative, was used as a nucleating agent in this study. Crystallization kinetic parameters obtained from DSC cooling curves showed that incorporation of a nucleating agent by means of a masterbatch increased the crystallization rate by approximately two times compared to that of the sample with the same concentration of nucleating agent without the use of a... 

    In vitro bioactivity and corrosion resistance enhancement of Ti-6Al-4V by highly ordered TiO 2 nanotube arrays

    , Article Journal of the Australian Ceramic Society ; Volume 55, Issue 1 , 2019 , Pages 187-200 ; 25101560 (ISSN) Sarraf, M ; Sukiman, N. L ; Bushroa, A. R ; Nasiri Tabrizi, B ; Dabbagh, A ; Abu Kasim, N. H ; Basirun, W. J ; Sharif University of Technology
    Springer International Publishing  2019
    Abstract
    In the present study, the structural features, corrosion behavior, and in vitro bioactivity of TiO 2 nanotubular arrays coated on Ti–6Al–4V (Ti64) alloy were investigated. For this reason, Ti64 plates were anodized in an ammonium fluoride electrolyte dissolved in a 90:10 ethylene glycol and water solvent mixture at room temperature under a constant potential of 60 V for 1 h. Subsequently, the anodized specimens were annealed in an argon gas furnace at 500 and 700 °C for 1.5 h with a heating and cooling rate of 5 °C min −1 . From XRD analysis and Raman spectroscopy, a highly crystalline anatase phase with tetragonal symmetry was formed from the thermally induced crystallization at 500 °C.... 

    Numerical modeling and experimental validation of microstructure in gray cast iron

    , Article International Journal of Minerals, Metallurgy and Materials ; Volume 19, Issue 10 , 2012 , Pages 908-914 ; 16744799 (ISSN) Jabbari, M ; Davami, P ; Varahram, N ; Sharif University of Technology
    Springer  2012
    Abstract
    To predict the amount of different phases in gray cast iron by a finite difference model (FDM) on the basis of cooling rate (R), the volume fractions of total γphase, graphite, and cementite were calculated. The results of phase composition were evaluated to find a proper correlation with cooling rate. More trials were carried out to find a good correlation between the hardness and phase composition. New proposed formulas show that the hardness of gray cast iron decreases as the amount of graphite phase increases, and increases as the amount of cementite increases. These formulas are developed to correlate the phase volume fraction to hardness. The results are compared with experimental data... 

    Welding metallurgy of stainless steels during resistance spot welding part I: Fusion zone

    , Article Science and Technology of Welding and Joining ; Volume 20, Issue 6 , Mar , 2015 , Pages 502-511 ; 13621718 (ISSN) Pouranvari, M ; Alizadeh Sh, M ; Marashi, S. P. H ; Sharif University of Technology
    Maney Publishing  2015
    Abstract
    Weldability is one of the key requirements for automotive materials. This two-part paper aims at understanding the metallurgical phenomena during resistance spot welding of stainless steels, as interesting candidates for automotive body in white. Part I addresses the phase transformations in the fusion zone of three types of stainless steels including austenitic, ferritic and duplex types. The solidification and solid state phenomena including columnar to equiaxed transition, ferrite– austenite post-solidification transformation, martensitic transformation and carbide precipitation are discussed. Particular attention is given to the effect of high cooling rate of resistance spot welding... 

    Improving the performance of a photonic PCR system using TiO2 nanoparticles

    , Article Journal of Industrial and Engineering Chemistry ; 2020 Amadeh, A ; Ghazimirsaeed, E ; Shamloo, A ; Dizani, M ; Sharif University of Technology
    Korean Society of Industrial Engineering Chemistry  2020
    Abstract
    Nucleic acid amplification using polymerase chain reaction (PCR) method has been widely used in different fields such as agricultural science, medicine, pathogen identification, and forensics to name a few. Today, it seems inevitable to have a robust, simple PCR system for diagnostics at the point-of-care (POC) level. Many photonic PCR systems have been proposed in the literature that benefit from plasmonic photothermal heating to achieve the common PCR thermal cycling. However, non-homogeneous temperature distribution is a challenge in some of them. In the present work, to achieve more efficient gene amplification, the effect of adding TiO2 nanoparticles has been investigated in a photonic... 

    Improving the performance of a photonic PCR system using TiO2 nanoparticles

    , Article Journal of Industrial and Engineering Chemistry ; Volume 94 , 2021 , Pages 195-204 ; 1226086X (ISSN) Amadeh, A ; Ghazimirsaeed, E ; Shamloo, A ; Dizani, M ; Sharif University of Technology
    Korean Society of Industrial Engineering Chemistry  2021
    Abstract
    Nucleic acid amplification using polymerase chain reaction (PCR) method has been widely used in different fields such as agricultural science, medicine, pathogen identification, and forensics to name a few. Today, it seems inevitable to have a robust, simple PCR system for diagnostics at the point-of-care (POC) level. Many photonic PCR systems have been proposed in the literature that benefit from plasmonic photothermal heating to achieve the common PCR thermal cycling. However, non-homogeneous temperature distribution is a challenge in some of them. In the present work, to achieve more efficient gene amplification, the effect of adding TiO2 nanoparticles has been investigated in a photonic... 

    Role of cooling rate in selective synthesis of graphene and carbon nanotube on Fe foil using hot filament chemical vapor deposition

    , Article 2016 IEEE 7th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference, UEMCON 2016, 20 October 2016 through 22 October 2016 ; 2016 ; 9781509014965 (ISBN) Abdolahi, M ; Kaminska, B ; Akhavan, O ; Talebi, S ; Ghoranneviss, M ; Arab, Z ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    In this study, graphene sheets and carbon nanotubes (CNTs) were selectively grown on Fe foil at a relatively low growth temperature and varying cooling rates using a hot filament chemical vapor deposition (HFCVD) apparatus with C2H2 as the precursor. The results of the scanning electron microscopy and Raman spectroscopy revealed that the increase of the cooling rate from 7 to 10 or 20 °C/min provoked a structure transition from CNT to graphene. The optimum crystal quality of the graphene sheets (Iq/Id ∼1.1) was achieved at the cooling rate of 20 °C/min. According to the AFM analysis, the thickness of the stacked graphene sheets was found to be ∼2.9-3.8 nm containing ∼8-11 monolayers. The XRD...