Loading...
Search for: density--specific-gravity
0.01 seconds
Total 44 records

    An analytical review on Spark Plasma Sintering of metals and alloys: from processing window, phase transformation, and property perspective

    , Article Critical Reviews in Solid State and Materials Sciences ; 2022 ; 10408436 (ISSN) Abedi, M ; Sovizi, S ; Azarniya, A ; Giuntini, D ; Seraji, M. E ; Hosseini, H. R. M ; Amutha, C ; Ramakrishna, S ; Mukasyan, A ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    ABSTRACTs: The need for fully dense material with well-engineered microstructures has led to the promising emergence of innovative sintering technologies among which the Spark Plasma Sintering (SPS) is one of the most favorite. Unlike the conventional sintering processes, SPS takes advantage of a current flow passing through the sintering die and metallic powders by which fast densification with minimal grain growth and enhanced physicomechanical properties can be obtained. Albeit there is a growing interest in the exploitation of SPS in producing sufficiently consolidated metallic parts, no analytical review has been released over the effects of SPS parameters on the densification behavior,... 

    A new cubic equation of state for sweet and sour natural gases even when composition is unknown

    , Article Fuel ; Vol. 134, issue , 2014 , pp. 333-342 ; ISSN: 00162361 Jarrahian, A ; Heidaryan, E ; Sharif University of Technology
    Abstract
    In this paper, the Heidaryan and Jarrahian equation of state (Heidaryan and Jarrahian, 2013) has been adapted as a first worldwide cubic EOS to calculate the density of dry natural gases, wet natural gases, and single-phase gas condensates "sweet and sour mixtures" (up to 73.85, 97.63 and 38.37 mol percent of H2S, CO2, and N2 respectively) even when the gas composition is unknown, through new gas specific gravity correlation equations. Correction terms of water content as high as 10 mol percent of H2O and hythane (natural gas + hydrogen) as high as 74.9 mol percent of H2 were obtained. The equation of state was validated with 8985 experimental compressibility factor data points from 308... 

    A suction-controlled ring device to measure the coefficient of lateral soil pressure in unsaturated soils

    , Article Geotechnical Testing Journal ; Volume 44, Issue 1 , 2020 Pirjalili, A ; Garakani, A. A ; Golshani, A ; Mirzaii, A ; Sharif University of Technology
    ASTM International  2020
    Abstract
    A suction-controlled ring device has been developed to continuously measure the coefficient of lateral soil pressure in deformable unsaturated soil samples from the at-rest to the active condition under application of increasing vertical pressure and controlled matric suction. The device incorporates a thin aluminum specimen ring equipped with horizontal strain gages for recording the lateral soil strains. In addition, a sensor recording water volume changes is utilized to continuously monitor the degree of saturation of the soil sample during tests. The matric suction within the soil texture is controlled using the axis translation technique. In order to verify the performance of the ring... 

    Cell-structure and flow stress investigation of largely strained non-heat-treatable Al-alloys using dislocation based model

    , Article Materials Science and Engineering A ; Volume 739 , 2019 , Pages 167-172 ; 09215093 (ISSN) Firouzabadi, S. S ; Kazeminezhad, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    A severe plastic deformation is widely used to improve the mechanical properties of non-heat-treatable alloys. Thus, the investigation and modeling of microstructural evolutions of materials during large straining are of great importance. In this research, substructural evolutions of four different kinds of Al alloys namely Al-1Mn, Al-1Mg, Al-2.77Mg and Al-5Mg, have been studied using a dislocation based model and the mechanical properties of these alloys have been compared considering all microstructural parameters such as dislocation density, subgrain size, cell wall misorientation and the effect of alloying element. As a result, a simplified general equation has been expressed in order to... 

    Characterization of nanostructured biodegradable Zn-Mn alloy synthesized by mechanical alloying

    , Article Journal of Alloys and Compounds ; Volume 735 , 2018 , Pages 1319-1327 ; 09258388 (ISSN) Sotoudeh Bagha, P ; Khaleghpanah, S ; Sheibani, S ; Khakbiz, M ; Zakeri, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this study, nanostructured biodegradable pure Zn, Zn-4 wt. % Mn and Zn-24 wt % Mn alloys were produced by 20 h mechanical alloying and consequent cold pressing and sintering. Structural evolutions were investigated using the X-ray diffraction technique. Also, the microstructure was characterized by scanning electron microscopy. The effects of alloy composition on density, mechanical properties, corrosion behavior in Hank's solution, cell viability and cell attachment were investigated. Crystallite size of the synthesized alloys after 20 h of milling reached to less than 40 nm and remained less than 80 nm after consolidation and sintering for 1 h. Alloys contain MnZn13 as second phase... 

    Co-crystallization in ternary polyethylene blends: tie crystal formation and mechanical properties improvement

    , Article Polymer International ; Volume 65, Issue 12 , 2016 , Pages 1405-1416 ; 09598103 (ISSN) Eslamian, M ; Bagheri, R ; Pircheraghi, G ; Sharif University of Technology
    John Wiley and Sons Ltd  2016
    Abstract
    Understanding the co-crystallization behavior of ternary polyethylene (PE) blends is a challenging task. Herein, in addition to co-crystallization behavior, the rheological and mechanical properties of melt compounded high density polyethylene (HDPE)/low density polyethylene (LDPE)/Zeigler − Natta linear low density polyethylene (ZN-LLDPE) blends have been studied in detail. The HDPE content of the blends was kept constant at 40 wt% and the LDPE/ZN-LLDPE ratio was varied from 0.5 to 2. Rheological measurements confirmed the melt miscibility of the entire blends. Study of the crystalline structure of the blends using DSC, wide angle X-ray scattering, small angle X-ray scattering and field... 

    Damage evolution in Saffil alumina short-fibre reinforced aluminium during tensile testing

    , Article Materials Science and Engineering A ; Volume 395, Issue 1-2 , 2005 , Pages 27-34 ; 09215093 (ISSN) Tavangar, R ; Weber, L ; Mortensen, A ; Sharif University of Technology
    2005
    Abstract
    The evolution of microstructural damage during tensile deformation of pure aluminium reinforced with 10 vol.% alumina short fibres is studied by monitoring the evolution of density and Young's modulus as a function of tensile strain. It is found that Young's modulus drops rapidly until a strain εc ≈ 3%. The composite density remains virtually unchanged in this strain range. At strains above εc, Young's modulus decreases more slowly while the density begins to decrease linearly, indicating void growth in the composite. It is shown that the drop in Young's modulus is linked to fragmentation of fibres aligned along the stress axis, while the decrease in density is related to void opening across... 

    Densification behavior and mechanical properties of biomimetic apatite nanocrystals

    , Article Current Nanoscience ; Volume 7, Issue 5 , 2011 , Pages 776-780 ; 15734137 (ISSN) Eskandari, A ; Aminzare, M ; Hassani, H ; Barounian, H ; Hesaraki, S ; Sadrnezhaad, S. K ; Sharif University of Technology
    2011
    Abstract
    Nanocrystalline hydroxyapatite (nHA) of 50 nm average diameter and length to diameter ratio of >3 was synthesized by biomimetic method. Non-isothermal sintering improved densification behavior and mechanical properties of apatite to 0.88 maximum fractional density, 70MPa bending strength, 148MPa compressive strength and 2.53GPa microhardness at sintering temperature of 1250°C. Higher sintering temperatures resulted in the decomposition of the apatite and in-situ biphasic calcium phosphate HAP/TCP formation. This process lowered apatite densification and weakened mechanical properties of the sintered specimen. Transmission electron microscopy (TEM), x-ray diffraction (XRD) and field emission... 

    Density and power graphs in graph homomorphism problem

    , Article Discrete Mathematics ; Volume 308, Issue 17 , 6 September , 2008 , Pages 4027-4030 ; 0012365X (ISSN) Daneshgar, A ; Hajiabolhassan, H ; Sharif University of Technology
    2008
    Abstract
    We introduce two necessary conditions for the existence of graph homomorphisms based on the concepts of density and power graph. As corollaries, we obtain a lower bound for the fractional chromatic number, and we set forward elementary proofs of the facts that the circular chromatic number of the Petersen graph is equal to three and the fact that the Coxeter graph is a core. © 2007 Elsevier B.V. All rights reserved  

    Design and fabrication of injectable microcarriers composed of acellular cartilage matrix and chitosan

    , Article Journal of Biomaterials Science, Polymer Edition ; Volume 29, Issue 6 , 2018 , Pages 683-700 ; 09205063 (ISSN) Sivandzade, F ; Mashayekhan, S ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    Cartilage is an avascular tissue with limited self-repair ability. Since the methods for treatment of cartilage defects have not been effective, new therapies based on tissue engineering are considered over the recent years. In this study, human cartilage tissue was decellularized and porous injectable microcarriers (MCs) composed of acellular extracellular matrix (ECM) of cartilage tissue and chitosan (CS), with different ECM weight ratios, were fabricated by electrospraying technique to be used in the treatment of articular cartilage defects. Various properties of ECM/CS MCs such as microstructure, mechanical strength, water uptake behaviour, and biodegradability rate were investigated.... 

    Direct metal laser sintering of Fe-C-Cu steel powder

    , Article European Powder Metallurgy Congress and Exhibition, Euro PM 2005, Prague, 2 October 2005 through 5 October 2005 ; Volume 3 , 2005 , Pages 41-47 ; 9781899072187 (ISBN) Simchi, A ; Petzoldt, F ; Pohl, H ; European Powder Metallurgy Association ; Sharif University of Technology
    European Powder Metallurgy Association (EPMA)  2005
    Abstract
    Cu-alloyed sintered steels are one of the main product groups in ferrous powder metallurgy (P/M). To expand the application of P/M technology to different sectors of industry and to create new market, it is believed that rapid prototyping and short serial production of sintered parts for functional testing is important. In the present work, rapid prototyping of sintered Fe-C-Cu steel powders by direct metal laser sintering (DMLS) process was studied. Fe, Fe-0.8%C, Fe-2%Cu, Fe-4%Cu, Fe-0.8%C-2%Cu-0.35%P powders were laser sintered in widely varying conditions. The densification and microstructural features of the sintered parts were evaluated. The results revealed that rapid prototyping of... 

    Effect of organoclay loading and electron beam irradiation on the physico-mechanical properties of low-density polyethylene/ethylene-vinyl acetate blend

    , Article Polymers for Advanced Technologies ; Volume 22, Issue 12 , 2011 , Pages 2352-2359 ; 10427147 (ISSN) Shojaei, A ; Behradfar, A ; Sheikh, N ; Sharif University of Technology
    2011
    Abstract
    The influence of electron beam (EB) irradiation and organoclay (OC) loading on the properties of low-density polyethylene (LDPE)/ethylene-vinyl acetate (EVA) blends was investigated. The samples were subjected to the EB irradiation with the dose values of 50 and 250kGy. X-ray diffraction (XRD), gel content, mechanical, thermal, and electrical properties were utilized to analyze the characteristics of the LDPE/EVA blends with and without OC at different irradiation dosages. Gel content analysis showed that the OC promotes considerably the insoluble part so that the LDPE/EVA blends filled with OC become fully crosslinked at 250kGy; possibly through the formation of further crosslinks between... 

    Effect of processing parameters on electrical, mechanical and magnetic properties of iron-resin soft magnetic composite

    , Article Powder Metallurgy ; Volume 50, Issue 1 , 2007 , Pages 86-90 ; 00325899 (ISSN) Hemmati, I ; Madaah Hosseini, H. R ; Miraghaei, S ; Sharif University of Technology
    2007
    Abstract
    In the present paper, a practical thermal treatment process has been introduced to stress relieve the iron powders in a soft magnetic composite. The composites were pressed and treated at different pressures and temperatures. Also, some of the samples were treated for various periods of time at 200°C. Density, electrical resistivity and transverse rupture strength of the samples were measured and fracture surfaces were studied by SEM. A series of tests were performed to determine the DC magnetic properties of the samples. It has been shown that there are optimum amounts of resin content and compaction pressure and temperature, rather than time is the dominant factor in stress relief of the... 

    Effect of sintering temperature and siliconcarbide fraction on density, mechanical properties and fracture mode of alumina-silicon carbide micro/nanocomposites

    , Article Materials and Design ; Volume 37 , May , 2012 , Pages 251-255 ; 02641275 (ISSN) Rahimnejad Yazdi, A ; Baharvandi, H ; Abdizadeh, H ; Purasad, J ; Fathi, A ; Ahmadi, H ; Sharif University of Technology
    2012
    Abstract
    In this study Al2O3-SiC micro/nanocomposites have been fabricated by mixing alumina nanopowders and silicon carbide micro/nanopowders, followed by hot pressing at 1550, 1600, 1650 and 1700°C. The density, mechanical properties and fracture mode of Al2O3-SiC composites containing different volume fractions (2.5%, 5%, 7.5%, 10% and 15%) of micro/nanoscale SiC particles were investigated and compared with those of alumina. The relative density of composites could reach values very close to theoretical density, especially after sintering at 1700°C. However, relative density declined by increasing the SiC fraction at the same sintering temperature. The flexural strength of composites was best for... 

    Effect of TiO2 nanofiber density on organic-inorganic based hybrid solar cells

    , Article International Journal of Engineering, Transactions A: Basics ; Vol. 27, issue. 7 , 2014 , p. 1133-1138 Boroumandnia, A ; Kasaeian, A. B ; Nikfarjam, A. R ; Mohammadpour, R ; Sharif University of Technology
    Abstract
    In this work, a comparative study of hybrid solar cells based on P3HT and TiO2 nanofibers was accomplished. Electrospinning, a low cost production method for large area nanofibrous films, was employed to fabricate the organic-inorganic hybrid solar cells based on poly (3-hexylthiophene) and TiO2 nanofibers. The performance of the hybrid solar cells was analyzed for four density levels of TiO2 nanofibers which resulted in the average power conversion efficiency of about 0.0134% under AM 1.5 simulated illuminations (100 mWcm-2). It is found that the higher densities of TiO2 lead to more interface area and generating exciton, so the power conversion efficiency will be increased till the active... 

    Effects of non-isothermal annealing on microstructure and mechanical properties of severely deformed aluminum samples: Modeling and experiment

    , Article Transactions of Nonferrous Metals Society of China (English Edition) ; Volume 29, Issue 6 , 2019 , Pages 1127-1137 ; 10036326 (ISSN) Khodabakhshi, A. R ; Kazeminezhad, M ; Sharif University of Technology
    Nonferrous Metals Society of China  2019
    Abstract
    In order to investigate the evolution of microstructure and flow stress during non-isothermal annealing, aluminum samples were subjected to strain magnitudes of 1, 2 and 3 by performing 2, 4 and 6 passes of multi-directional forging. Then, the samples were non-isothermally annealed up to 150, 200, 250, 300 and 350 °C. The evolution of dislocation density and flow stress was studied via modeling of deformation and annealing stages. It was found that 2, 4 and 6 passes multi-directionally forged samples show thermal stability up to temperatures of 250, 250 and 300 °C, respectively. Modeling results and experimental data were compared and a reasonable agreement was observed. It was noticed that... 

    Effects of rubber curing ingredients and PhenolicResin on mechanical, thermal, and morphological characteristics of rubber/phenolic-resin blends

    , Article Journal of Applied Polymer Science ; Volume 108, Issue 6 , 2008 , Pages 3808-3821 ; 00218995 (ISSN) Derakhshandeh, B ; Shojaei, A ; Faghihi, M ; Sharif University of Technology
    2008
    Abstract
    This article examines the physical and mechanical characteristics of mixtures of two different synthetic rubbers, namely styrene-butadiene rubber (SBR) and nitril-butadiene rubber (NBR), with novolac type phenolicresin (PH). According to Taguchi experimental design method, it is shown that the addition of PH increases the crosslinking density of rubber phase probably due to its curative effects. Thermal analysis of the blends indicates that, contrary to NBR/PH blend, thermal stability of SBR/PH blend is dependent on sulfur content due to predominant polysulfidic crosslinks formed in SBR. Slight shift in glass-transition temperature (Tg) of pure SBR and NBR vulcanizates by the addition of PH... 

    Estimation of mean radius, length and density of microvasculature using diffusion and perfusion MRI

    , Article Scientia Iranica ; Volume 13, Issue 4 , 2006 , Pages 348-354 ; 10263098 (ISSN) Ashoor, M ; Jahed, M ; Chopp, M ; Mireshghi, A ; Sharif University of Technology
    Sharif University of Technology  2006
    Abstract
    In theory, diffusion and perfusion information in MRI maps can be combined to yield morphological information, such as capillary density, volume and possibly capillary plasma velocity. This paper suggests a new method for determination of mean radius, length and capillary density in normal regions using diffusion and perfusion MRI. Mean Transit Time (MTT), Cerebral Blood Volume (CBV), Apparent Diffusion Coefficient (ADC), pseudo-diffusion coefficient (D*) and ΔR2 and ΔR2* values were utilized to calculate mean radius, length and capillary density. To verify the proposed theory, a special protocol was designed and tested on normal regions of a male Wistar rat using obtained functions. Mean... 

    Experimental study of a solar desalination pond as second stage in proposed zero discharge desalination process

    , Article Solar Energy ; Volume 97 , 2013 , Pages 138-146 ; 0038092X (ISSN) Farahbod, F ; Mowla, D ; Jafari Nasr, M. R ; Soltanieh, M ; Sharif University of Technology
    2013
    Abstract
    This work represents the efficiency of a solar desalination pond as a second stage of proposed zero discharge desalination processes to reach fresh water and also concentrated brine from the effluent wastewater of the desalination unit of Mobin petrochemical complex. So a solar desalination pond is constructed after a pretreatment unit to concentrate the softened wastewater to about 20wt%. The concentrated wastewater is as a suited feed for a forced circulation crystallizer. During one year, the effects of major parameters such as ambient temperature and solar insolation rate are investigated, experimentally. specific gravity in each layer of concentrated brine wastewater is evaluated. Also,... 

    Geotechnical characteristics of copper mine tailings: A case study

    , Article Geotechnical and Geological Engineering ; Volume 25, Issue 5 , 2007 , Pages 591-602 ; 09603182 (ISSN) Shamsai, A ; Pak, A ; Bateni, S. M ; Ayatollahi, S. A. H ; Sharif University of Technology
    2007
    Abstract
    Waste management issue in mining industry has become increasingly important. In this regard, construction of tailings dams plays a major role. Most of the tailings dams require some kinds of remedial actions during their operational lifetime, among which heightening is the most common. In the first stage of the remedial provisions for Sarcheshmeh Copper Complex tailings dam in Iran, it has been decided to use hydrocyclone method to provide suitable construction material due to the high cost associated with using borrow materials for heightening of the dam. To undertake this project a series of laboratory experiments was performed to determine the copper 'original tailings' and 'cycloned...