Loading...
Search for: electric-resistance
0.011 seconds
Total 106 records

    Design and Study of a Resistive Pulse Sensing System with a Tunable Pore

    , M.Sc. Thesis Sharif University of Technology Shoghi Tekmedash, Mohammad (Author) ; Taghipoor, Mojtaba (Supervisor) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    Over the last few years, exploiting particle sensing systems for micro-nanoparticles has grabbed much attention. Attaining the physical properties of particles using resistive pulse sensing has been one of the utmost applicable methods of sensing particles. Pores are pivotal elements of systems based on resistive pulse sensing. Two electrodes are placed at both sides of the pore, filling the containers with an electrolyte solution. Pulses of particle translocation across the pore can be recorded by applying a voltage across the electrodes. In more developed versions of resistive pulse sensing systems, pore size is tunable to attain polydisperse particles within a dispersion. In subsequent... 

    An Investigation into the Production and Properties of Lead-Free Solder Alloy Sn-3.5Ag

    , M.Sc. Thesis Sharif University of Technology Ghadi, Saman (Author) ; Karimi Taheri, Ali (Supervisor)
    Abstract
    This study was conducted in order to investigate on production and propeties of lead free solder alloy. For this purpose, Sn-Ag alloy with 3.5 weight percent of silver and sn-3.5Ag-0.7Cu at eutectic composition were produced with casting procedure.Single-lap Specimens were used to simulate real solder joints with the solder reflowed between two pure Cu substrate.Microstructural characterization, electrical resistance measurements and shear-tension test were performed.A deacrease of electrical resistance was observed in produced alloys in comparison with Sn-Pb . Experimental results showed that mechanical properties of produced alloys was better than common pb content alloy.The effect of... 

    Upset Resistance Welding of Aluminium to Steel

    , M.Sc. Thesis Sharif University of Technology Abiri, Milad (Author) ; Kookabi, Amir Hossein (Supervisor) ; Movahedi, Mojtaba (Supervisor)
    Abstract
    Aluminum and steel are the most utilized metals in industry and joining of them has many applications including heat exchangers and parts in aluminum extraction process. In this research, Upset Resistance Welding of aluminum to stainless steel was studied. In this regard, the effect of current intensity, time of welding, in-situ post-heating operation and post-heating operation in the furnace were investigated on the microstructure, mechanical properties and electrical resistance of welds. The currents of 2.25, 2.30 and 2.35 kA and times of 55, 60 and 65 cycles were applied for welding. Then in-situ post-heating conducted under currents of 1.75, 2.25 and 2.75 kA and 10 cycles on the sample... 

    Butt Resistance Welding of Copper to Aluminum Wires

    , M.Sc. Thesis Sharif University of Technology Shamsian, Mahdi (Author) ; Kokabi, Amir Hossein (Supervisor) ; Movahedi, Mojtaba (Supervisor)
    Abstract
    In this study, Butt resistance welding of copper to aluminum wires was studied. In this regard, the effect of current, pressure, post weld heat treatment and using intermediate layer of tin on the microstructure, strength and special electrical resistance of welds were examined. Based on a series of initial tests to establish the connection with the appropriate strength, the diameter of the aluminum and copper wires respectively 3 and 3.5 mm and their length 9 and 3.5 cm were selected. In order to weld samples, currents 4.4 to 4.7 KA and pressures 0.3 and 0.5 MPa were used. Then post weld heat treatment at currents 0.5, 1 and 1.5 KA on the welded sample in the pressure 0.3 MPa and the... 

    Production and Investigation of Microstructure and Some Physical and Mechanical Properties of Copper Matrix Composites Reinforced with Micro-nano Yttria Stabilized Zirconium Oxide (YSZ) Particles

    , M.Sc. Thesis Sharif University of Technology Mirazimi, Jafar (Author) ; Purazarang, Kazem (Supervisor) ; Abachi, Parvin (Supervisor)
    Abstract
    In this study, the ultrafine-nanometric yttria stabilized zirconia (YSZ) particles were used for reinforcing of copper metal powder. To producing of bulk nanocomposite specimens, the copper powder and the proper volume percent of reinforcement powders (i.e. 2, 3 and 5) were mixed using Turbula mixer for one hour. Before the mixing of two metallic powders and ceramic nanoparticles, for separation of agglomerated zirconium oxide nanoparticles that witch leads to producing of nanocomposite specimens with satisfactorily distributed secondary phase, the ultrasonic devise with enough quantity of ethanol as neutral liquid have been used for 15 minutes. The powders mixture have been placed under... 

    Production of in Situ Cu/NbC Nanocomposites Powders via Mechanical Alloying and Investigation the Mechanical (Wear Resistance) and Physical (Electrical Conductivity) Properties

    , M.Sc. Thesis Sharif University of Technology Gholami Shiri, Sajjad (Author) ; Abachi, Parvin (Supervisor) ; Purazarang, Kazem (Supervisor)
    Abstract
    For application such as electrical contacts and spot welding electrodes, both high electrical conductivity and wear resistance are required. Additionally, such parts should have structural stability at evaluated temperature. Copper based composites containing carbides or oxides reinforcement can be the good choice for production of such parts. In present work, in-situ Cu/NbC composite via mechanical alloying with homogenous distribution of nano reinforcement particle has been produced. For this purpose, in first stage, copper powder was milled with 5, 8, 10 and 12 wt. % of niobium powder in two types of mills, i. e. vibratory dicky mill and planetary ball mill for 5 and 32 h respectively. At... 

    The Fabrication of Copper base Chromium Oxide Reinforced Nanocomposite and Investigation of its Mechanical and Physical Properties

    , M.Sc. Thesis Sharif University of Technology Shojaeepour, Fahimeh (Author) ; Pourazarang, Kazem (Supervisor) ; Abachi, Parvin (Supervisor)
    Abstract
    It is well known that Cu/Al2O3 nanocomposites have high potential for use in structural, electrical applications which enhanced mechanical characteristics are required. In the present work, in order to improve the in-situ oxidation kinetic of solute element, chromium was used instead of aluminum. At the initial stage, elemental Cu and Cr powders were mechanically alloyed for 60h under argon atmosphere. It was followed by mechanically milling of Cu-Cr pre-alloyed and Cu2O powders. The nanocomposite specimens, containing different amounts of Cr2O3, depending on the Cr content in the range of 1-3 wt. %, were produced by in-situ oxidation of Cu-Cr pre-alloyed powders. To prevent oxidation of... 

    Casting Method Development and Characteristics Enhancement of High Performance Concrete by Utilization of Nano-SiO2 Particles and Different Types of Fibers

    , Ph.D. Dissertation Sharif University of Technology Mobini, Mohammad Hossein (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    The aim of this study was to evaluate the effects of applying low replacement ratios (0.75% and 1.50% of the binder weight) of nano-SiO2 particles with different specific surface areas (200 and 380 m2/g) on the properties of high-performance concrete (HPC). Mechanical (compressive and splitting tensile strengths), electrical resistivity, non-destructive (ultrasonic pulse velocity), and microstructural (mercury intrusion porosimetry, X-ray diffraction, and scanning electron microscopy) tests were conducted to investigate the macroscopic and microscopic effects of nano-SiO2 particles on HPC characteristics. The results indicated that the performance of nano-SiO2 particles significantly... 

    Quality Estimation of Resistance Spot Welding Using Ultrasonic Testing and Artificial Neural Network Approach

    , M.Sc. Thesis Sharif University of Technology Ghafarallahi, Ehsan (Author) ; Farrahi, Gholamhossein (Supervisor)
    Abstract
    One of the most common nondestructive tests is ultrasonic testing which has been paid great attention from specialists of this field. Apart from being economical and efficient, ultrasonic waves are sensitive to small changes in the structure and thus have a high degree of reliability. The most common method of ultrasonic testing is manual single-element A-scan inspection, carried out offline using longitudinal waves with pulse echo technique which is used in this thesis. The purpose of this thesis is to monitor structural health of thin metal joints and estimate quality of resistance spot welds by simulating ultrasonic testing using a finite element software. Initially, acoustic properties... 

    Effect of iron Powder in Electrical Conductivity of Concrete

    , M.Sc. Thesis Sharif University of Technology Ghanbari Chemazketi, Ali (Author) ; Joghataie, Abdolreza (Supervisor)
    Abstract
    Performance and mechanical properties of concrete such as tensile strength, compressive strength, conductivity, etc change with creation and emission of cracks. As health monitoring of important structures is a vital subject that demands a large amount of budget annualy. Studying problems and disadvantages of concrete is one of the most important branches of research.
    There are many ways to detect damage in concrete. Electrical resistance method that has been used in this thesis. In this study, an instrument called Risistivity Meter is used to measuring the electrical conductivity. This instrument measured the electrical conductivity, that it can be appropriate way to detect cracks... 

    Theoretical and Experimental Investigation of Cold Roll Welding for Production of Aluminum Clad Steel Sheet

    , Ph.D. Dissertation Sharif University of Technology Danesh Manesh, Habib (Author) ; Karimi Taheri, Ali (Supervisor)
    Abstract
    Aluminum coated steel sheet is an excellent composite material in which; the strength and economy of steel and durability of aluminum are combined. This material is produced by several methods. However, there are two main technologies to produce aluminized steel sheets: 1) the hot dip method and 2) the aluminum clad method (cold roll welding process). The hot dip method is most widely used for producing the aluminum coated steel. The aluminum coated steel sheet manufactured by this method is believed to be inferior to an aluminum sheet with respect to surface appearance, corrosion resistance and formability of the coated metal. Consequently, the aluminum clad steel method is one of the most... 

    The Effect of Shock and Vibration Loads on Disconnection and Fluctuations of Electrical Current in Connectors

    , M.Sc. Thesis Sharif University of Technology Darvish Gohari, Hamed (Author) ; Behzad, Mehdi (Supervisor)
    Abstract
    Electrical connectors that used in high speed systems interrupt the connection at the effect of Inertia. Also connectors should be able to work in high vibration conditions without any problems. Vibration of the connector pins can reduce the contact area or even remove it at very short time intervals, which lead to increase connector resistance or disconnection of instantaneous current. These current fluctuations will result in unpredictable performance disturbanceof the electrical system in very sensitive systems and therefore it should be avoided. In this Project, impacts of shock and vibration loads on the connectors is modeled by using FEM and with consideration of this model, connection... 

    , M.Sc. Thesis Sharif University of Technology Adibi, Behnam (Author) ; Karimi Taheri, Ali (Supervisor)
    Abstract
    This study was conducted in order to investigate the effect of difference in electrical resistivity between low carbon steel and austenitic stainless steel on the physical and mechanical properties and fracture mode of dissimilar resistance spot welds of these alloys. For this purpose, plastic deformation using constrained groove pressing combined with rolling applied to low carbon steel in three levels of 40%, 156% and 272%. Microstructural characterization, micro-hardness measurements and shear-tension test were performed. It was shown that by increasing the pre-strain in low carbon steel its electrical resistivity increases from 13.08 μΩ.cm to 19.5 μΩ.cm and because of reduction of... 

    Friction Stir Soldering of Copper Coated Graphite-Copper Joints by Sn-Pb Solder

    , M.Sc. Thesis Sharif University of Technology Ebrahimian, Ali (Author) ; Kokabi, Amir Hossein (Supervisor)
    Abstract
    Friction stir soldering (FSS) or brazing (FSB) as an emerging joining process, was first developed to resolve some shortcomings in FSLW and FSSLW such as excessive IMC layer thickness and confined bond area. Although it has advantages over conventional furnace soldering and/or brazing, including localized heating, less detrimental thermal effects on the substrates and capability to reduce the amount of voids at the joint interface. The aim of this study is to investigate the effects of rotational speed, traverse speed and plunge depth of the pinless tool on the shear strength and electrical resistivity of the copper-coated graphite-copper FSSed joints with the aid of Sn-37Pb solder alloy. At... 

    Vibration effect on electrical resistance fluctuations in electrical connectors

    , Article Engineering Solid Mechanics ; Volume 6, Issue 4 , 2018 , Pages 299-306 ; 22918744 (ISSN) Behzad, M ; Darvish Gohari, H ; Mohammadi Dehabadi, A. A ; Sharif University of Technology
    Growing Science  2018
    Abstract
    Proper functioning of electrical connectors used in high oscillation is of great importance. Vibrations in connector pins cause stress and electrical resistance variations in the contact surface. In the present paper, the impacts of vibrational loads on electrical connectors is being modeled using the finite element method, and the electrical resistance oscillations of the connectors will be examined. Ultimately, the parameters affecting the electrical resistance oscillations of contacts will be determined and their relations with oscillations in electrical resistance are specified as well. © 2018 by the authors; licensee Growing Science, Canada, 2018 Growing Science Ltd. All rights reserved... 

    Use of polymer fibres recovered from waste car timing belts in high performance concrete

    , Article Construction and Building Materials ; Volume 80 , April , 2015 , Pages 31-37 ; 09500618 (ISSN) Khaloo, A. R ; Esrafili, A ; Kalani, M ; Mobini, M. H ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    The present paper discusses the possibility of adding recycled polymer fibres to high performance concrete (HPC). Fibres used in this study were recovered from discarded car timing belts. To investigate different characteristics of the concrete specimens several destructive and non-destructive tests, such as compressive strength, modulus of rupture, flexural toughness, ultrasonic velocity and electrical resistance tests were carried out. In addition, slump flow tests were conducted on the fresh concrete. Experimental results from the study showed that the use of low percentages (up to 0.5%) of waste fibres improved the modulus of rupture and flexural toughness. Based on ultrasonic and... 

    Upset-resistance welding of aluminium to copper rods: effect of interface on performance

    , Article Materials Science and Technology (United Kingdom) ; Volume 34, Issue 15 , 2018 , Pages 1830-1838 ; 02670836 (ISSN) Shamsian, M ; Movahedi, M ; Kokabi, A. H ; Ozlati, A ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    Upset resistance dissimilar welding of aluminium and copper narrow rods was performed. Effect of the interface characteristics was studied on the joint mechanical and electrical properties. Upset resistance welding (URW) was successful for production of joints with high strength and electrical conductivity between aluminium and copper rods. Reaction layer at the joint interface was composed of the Al2Cu cellular phase and lamellar eutectic structure of α-Al and Al2Cu. Enhancement of the welding current and decrease in the upset force increased the reaction layer thickness and strength of the joint. URW had no significant detrimental effect on the electrical conductivity of the weld zone.... 

    Totally solution-processed CuInS2 solar cells based on chloride inks: Reduced metastable phases and improved current density

    , Article Journal of Physics D: Applied Physics ; Volume 48, Issue 11 , March , 2015 , pp. 115304-115311 ; 00223727 (ISSN) Dehghani, M ; Behjat, A ; Tajabadi, F ; Taghavinia, N ; Sharif University of Technology
    Institute of Physics Publishing  2015
    Abstract
    Planar superstrate CuInS2 (CIS) solar cell devices are fabricated using totally solution-processed deposition methods. These Cd-free devices are structured by FTO/TiO2/In2S3/CIS/carbon, where TiO2 and In2S3 are deposited by spray pyrolysis, and a CIS film is deposited using spin-coating followed by annealing at 250 °C. The pasted carbon layer is utilized as the anode. No further sulfurization or selenization is employed. The Cu/In ratio in the ink is found as a critical factor affecting the morphology and crystallinity of the film as well as the photovoltaic performance of the device. An optimum Cu/In = 1.05 results in large-grain films with sharp diffraction peaks and, subsequently, optimal... 

    The role of microstructural features on the electrical resistivity and mechanical properties of powder metallurgy Al-SiC-Al2O3 nanocomposites

    , Article Materials and Design ; Volume 130 , 2017 , Pages 26-36 ; 02641275 (ISSN) Khodabakhshi, F ; Simchi, A ; Sharif University of Technology
    Abstract
    There are many engineering applications in which composite materials are required to satisfy two or more criteria regarding physical and mechanical properties. In this article, Al-matrix nanocomposites reinforced with different volume fractions of SiC nanoparticles (~ 50 nm; up to 6%) were processed by powder metallurgy (P/M) routes through mechanical milling and hot consolidation techniques. Microstructural studies showed that nano-metric Al2O3 particles with a size of ~ 20 nm and volume fraction of ~ 2% were formed and distributed in the metal matrix, owing to the surface oxides breaking. Microstructural analysis also revealed that the size of cellular structure and the density of... 

    The Pr and oxygen correlation in the GdPr123 system

    , Article Modern Physics Letters B ; Volume 16, Issue 25 , 2002 , Pages 943-953 ; 02179849 (ISSN) Khosroabadi, H ; Daadmehr, V ; Akhavan, M ; Sharif University of Technology
    2002
    Abstract
    We prepared single-phase polycrystalline Gd1-xPrx Ba2Cu3O7-δ samples with x = 0, 0.10, 0.15, and 0.20. The deoxygenation process of these samples was performed by an annealing method. Electrical resistivity measurements revealed depression of the transition temperature with the increase of x and δ. We calculated the hole concentration in the CuO2 plane for different values of x and δ. A linear dependence of transition temperature and hole concentration in the CuO2 plane was found as a function of 2δ + x. It is proposed that a combination of the localization and filling of holes should be considered as the effective mechanisms for the appearance of the Pr anomaly in HTSCs