Loading...
Search for: ethylen-glycol
0.013 seconds
Total 79 records

    Experimental investigation of the effect of copper electrodeposition on the aluminum surface and addition of ethylene glycol on boiling heat transfer coefficient

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; Volume 58, Issue 5 , 2022 , Pages 801-812 ; 09477411 (ISSN) Milani, P. A ; Mahdi, M ; Abarghooei, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    In this research, the effect of surface characteristics on boiling heat transfer has been investigated experimentally. For this purpose, a device with the ability to automatically record the liquid temperature of the inlet and outlet of the test area, calculate the coefficient of boiling heat transfer, and heat flux has been developed. The automatic temperature stability of the working fluid and the ability to investigate the effect of surfaces with different characteristics (in terms of material and surface structure) on the boiling heat transfer parameters are the most important features of this device. The performance of the experimental setup was evaluated by the modified "Chen" equation... 

    Thermodynamic analysis of a photovoltaic thermal system coupled with an organic Rankine cycle and a proton exchange membrane electrolysis cell

    , Article International Journal of Hydrogen Energy ; Volume 47, Issue 41 , 2022 , Pages 17894-17913 ; 03603199 (ISSN) Salari, A ; Hakkaki Fard, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this study, the performance of a Photovoltaic Thermal-Organic Rankine Cycle (PVT-ORC) system combined with a Proton Exchange Membrane Electrolysis Cell (PEMEC) is investigated. A combined numerical/theoretical model of the system is developed and used to evaluate the effect of various system design parameters. In addition, the effects of using water, ethylene glycol, and a mixture of water and ethylene glycol (50/50) as the working fluid of the PVT system and R134a, R410a, and R407c as the working fluid of the ORC cycle on the performance of the PVT-ORC-PEMEC system are studied. Based on the results, R134a and water demonstrated the best performance as the working fluid of the ORC and PVT... 

    Separation of carbon dioxide by potassium carbonate based supported deep eutectic liquid membranes: influence of hydrogen bond donor

    , Article Journal of Membrane Science and Research ; Volume 8, Issue 1 , 2022 ; 24765406 (ISSN) Saeed, U ; Khan, A. U ; Khan, A. L ; Gilani, M. A ; Bilad, M. R ; Sharif University of Technology
    Amirkabir University of Technology - Membrane Processes Research Laboratory  2022
    Abstract
    This article focuses on the study of potassium carbonate (PC) based deep eutectic solvents based supported liquid membranes (DES-SLMs) for CO2 separation. Two types of DESs were synthesized by mixing and subsequently heating PC with glycerol or ethylene glycol separately. The mechanism of interaction was inferred from the spectral analysis (FTIR) whereas thermal study (TGA) was performed to analyze the stability of the membrane. Experiments were carried out to analyze the permeability and separation factor of the membranes. The PC-Glycerol based SLM reported permeability of 34 Barrer and ideal selectivity of 59 while PC-Ethylene Glycol based SLM showed permeability of 20 Barrer and... 

    Piezoelectric behavior of Gamma-radiated nanocomposite hydrogel based on PVP-PEG-BaTiO3

    , Article Materials Science and Engineering B: Solid-State Materials for Advanced Technology ; Volume 276 , 2022 ; 09215107 (ISSN) GhaedRahmati, H ; Frounchi, M ; Dadbin, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This study aimed to evaluate the properties of nanocomposite hydrogel (NCH) based on poly (vinyl pyrrolidone) (PVP), poly (ethylene glycol) (PEG), and Barium titanate (BTNPs). Gamma radiation at various doses (25 kGy, 35 kGy) was employed to prepare cross-linked hydrogel. The effect of PVP concentration, PVP/PEG ratio, and BTNPs content, and irradiation dosage on gel content and swelling ratio of synthesized hydrogels were determined. The Flory-Rehner equation was employed to calculate the network parameters. The FTIR results indicate that the chemical structure was deformed through crosslinking PVP macromolecule radicals. The XRD spectra indicated the cubic phase of BTNPs particles and the... 

    The experimental investigation concerning the heat transfer enhancement via a four-point star swirl generator in the presence of water–ethylene glycol mixtures

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 144, Issue 1 , 2021 , Pages 167-178 ; 13886150 (ISSN) Jafari, M ; Farajollahi, A ; Gazori, H ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    In the present study, a new swirling flow generator is studied which aims to enhance the convective heat transfer rate in a heat exchanger tube. This device has a four-point star cross section. The study mainly investigates the effect of swirl generator on heat transfer rate and pressure drop along the test tube which is under a constant and uniform heat flux. The working fluid in the experiments is the water–ethylene glycol mixtures with Prandtl numbers ranging from 5 to 150 at different Reynolds numbers from 12,000 to 27,000. The results clarify the potential of the applied swirl generator to make a significant enhancement in the heat transfer rate with a satisfactory rise in the pressure... 

    A new developed integrated process configuration for production of hydrogen chloride using geothermal and wind energy resources

    , Article Sustainable Energy Technologies and Assessments ; Volume 45 , 2021 ; 22131388 (ISSN) Mehrpooya, M ; Ghorbani, B ; Khalili, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Ethylene dichloride thermal cracking is one of the conventional methods for hydrogen chloride production. A critical issue concerned with this method is to provide thermal energy for cracking reaction, which is generally provided by the flammable gasses inside the furnace. Utilizing renewable energy sources can be an interesting topic in this case. Hence, in this paper, the thermal integration feasibility of an ethylene dichloride cracking unit with a hybrid renewable plant, based on geothermal and wind energies, is investigated, while the case study for wind turbines system (Alstom ECO 74/1670/ Class II model) is Meshkin Shahr, located in Iran. To utilize geothermal energy, a... 

    Experimental investigation of the effect of copper electrodeposition on the aluminum surface and addition of ethylene glycol on boiling heat transfer coefficient

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; 2021 ; 09477411 (ISSN) Azadi Milani, P ; Mahdi, M ; Abarghooei, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    In this research, the effect of surface characteristics on boiling heat transfer has been investigated experimentally. For this purpose, a device with the ability to automatically record the liquid temperature of the inlet and outlet of the test area, calculate the coefficient of boiling heat transfer, and heat flux has been developed. The automatic temperature stability of the working fluid and the ability to investigate the effect of surfaces with different characteristics (in terms of material and surface structure) on the boiling heat transfer parameters are the most important features of this device. The performance of the experimental setup was evaluated by the modified "Chen" equation... 

    Supported deep eutectic liquid membranes with highly selective interaction sites for efficient CO2 separation

    , Article Journal of Molecular Liquids ; Volume 342 , 2021 ; 01677322 (ISSN) Saeed, U ; Khan, A. L ; Gilani, M. A ; Bilad, M. R ; Khan, A. U ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    This study demonstrates a new strategy in which deep eutectic solvents (DES), a new class of sustainable organic solvents, were impregnated into micro porous polymer support for separation of CO2 from CH4. Three different types of DESs were prepared by mixing and subsequent heating of betaine as hydrogen bond acceptor (HBA) in combination with either glycerol (G), ethylene glycol (EG) or urea (U) as hydrogen bond donors (HBD) in 1:3 stoichiometric mole ratio. The Fourier transform infrared (FTIR) spectroscopy was performed to confirm the formation of DESs. The gas permeation results showed that permeability of CO2 increased from 31.23 to 35.67 Barrer on substitution of HBD from glycerol to... 

    Novel thermal aspects of hybrid nanoparticles Cu-TiO2 in the flow of ethylene glycol

    , Article International Communications in Heat and Mass Transfer ; Volume 129 , 2021 ; 07351933 (ISSN) Ahmad, S ; Ali, K ; Faridi, A. A ; Ashraf, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Hybrid nanoparticles possess better chemical stability, mechanical resistance, thermal conductivity, physical strength and so forth as equated to pure nanoparticles. The present work describes the novel features of hybrid nanoparticles such as Titanium oxide (TiO2) and Copper (Cu) in the flow of Ethylene glycol (EG) under the induced magnetic field environment. The analysis covers the features of both pure nanofluid Cu/EG and hybrid nanofluid Cu-TiO2/EG. The concentration equation is amended by the activation energy term. The amalgamation of Cu-TiO2/EG exhibits improved and embellished thermal characteristics. A persuasive numerical technique named “Successive over Relaxation” is used to... 

    Novel thermal aspects of hybrid nanoparticles Cu-TiO2 in the flow of ethylene glycol

    , Article International Communications in Heat and Mass Transfer ; Volume 129 , 2021 ; 07351933 (ISSN) Ahmad, S ; Ali, K ; Faridi, A. A ; Ashraf, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Hybrid nanoparticles possess better chemical stability, mechanical resistance, thermal conductivity, physical strength and so forth as equated to pure nanoparticles. The present work describes the novel features of hybrid nanoparticles such as Titanium oxide (TiO2) and Copper (Cu) in the flow of Ethylene glycol (EG) under the induced magnetic field environment. The analysis covers the features of both pure nanofluid Cu/EG and hybrid nanofluid Cu-TiO2/EG. The concentration equation is amended by the activation energy term. The amalgamation of Cu-TiO2/EG exhibits improved and embellished thermal characteristics. A persuasive numerical technique named “Successive over Relaxation” is used to... 

    Morphology and phase-controlled growth of CuInS2 nanoparticles through polyol based heating up synthesis approach

    , Article Materials Science in Semiconductor Processing ; Volume 121 , 2021 ; 13698001 (ISSN) Heidariramsheh, M ; Dabbagh, M. M ; Mahdavi, S. M ; Beitollahi, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The properties of colloidal nanoparticles are the key parameters in the fabrication of inexpensive solar cells based on the solution methods. In this study, Different nanostructures of CuInS2 (CIS) were successfully synthesized by a heating-up facile polyol-based method in which, polyols including diethylene glycol (DEG), ethylene glycol (EG), and glycerol (Gly) were chosen as both the solvent and the reductant. It is found that not only the indium precursor type but also the polyol solvent are greatly effective on the size, morphology and crystal phase of this sulfide ternary composition. Briefly, the heating-up synthesis using In(acac)3 in DEG and Gly media, created nano-sized particles... 

    Prediction of the pressure drop for CuO/(Ethylene glycol-water) nanofluid flows in the car radiator by means of Artificial Neural Networks analysis integrated with genetic algorithm

    , Article Physica A: Statistical Mechanics and its Applications ; Volume 546 , 2020 Ahmadi, M. H ; Ghazvini, M ; Maddah, H ; Kahani, M ; Pourfarhang, S ; Pourfarhang, A ; Zeinali Herisg, S ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this investigation, neural networks were used to predict pressure drop of CuO-based nanofluid in a car radiator. For this purpose, the neural network with the multilayer perceptron structure was used to formulate a model for estimating the pressure drop In this way, different concentrations of copper oxide-based nanofluid were prepared. The base fluid was the mixture of ethylene glycol and pure water (60:40 wt%) which usually used as the cooling fluid in automotive industries. The prepared nanofluid samples were used in a car radiator and the pressure drop of nanofluid flows in the system at different Reynolds were measured. The main purpose of this study was developing the optimized... 

    The experimental investigation concerning the heat transfer enhancement via a four-point star swirl generator in the presence of water–ethylene glycol mixtures

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 144 , February , 2020 , 167–178 Jafari, M ; Farajollahi, A ; Gazori, H ; Sharif University of Technology
    Springer Netherlands  2020
    Abstract
    In the present study, a new swirling flow generator is studied which aims to enhance the convective heat transfer rate in a heat exchanger tube. This device has a four-point star cross section. The study mainly investigates the effect of swirl generator on heat transfer rate and pressure drop along the test tube which is under a constant and uniform heat flux. The working fluid in the experiments is the water–ethylene glycol mixtures with Prandtl numbers ranging from 5 to 150 at different Reynolds numbers from 12,000 to 27,000. The results clarify the potential of the applied swirl generator to make a significant enhancement in the heat transfer rate with a satisfactory rise in the pressure... 

    Effect of reactive diluent on gas separation behavior of photocurable acrylated polyurethane composite membranes

    , Article Journal of Applied Polymer Science ; Volume 137, Issue 3 , 15 January , 2020 Molavi, H ; Shojaei, A ; Mousavi, S. A ; Ahmadi, S. A ; Sharif University of Technology
    John Wiley and Sons Inc  2020
    Abstract
    In this study, the effects of the type and content of reactive diluents on the permeation/separation of carbon dioxide/nitrogen (CO2/N2) through acrylate-terminated polyurethane (APU)-acrylate/acrylic diluent (APUA) composite membranes was investigated. A series of APUs based on poly(ethylene glycol) (PEG)-1000 g mol−1, toluene diisocyanate, and 2-hydroxyethyl methacrylate was synthesized and then diluted with several reactive diluents. The results obtained from differential scanning calorimetry (DSC) and Fourier transform infrared analyses showed that the microphase interference of hard and soft segments increased with increasing reactive diluent content. Furthermore, with increasing alkene... 

    Application of M5 tree regression, MARS, and artificial neural network methods to predict the Nusselt number and output temperature of CuO based nanofluid flows in a car radiator

    , Article International Communications in Heat and Mass Transfer ; Volume 116 , July , 2020 Kahani, M ; Ghazvini, M ; Mohseni Gharyehsafa, B ; Ahmadi, M. H ; Pourfarhang, A ; Shokrgozar, M ; Zeinali Heris, S ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In the current study, CuO nanoparticles were dispersed in a mixture of Ethylene Glycol-Water (60/40 wt. %) to prepare stable nanofluid in different concentrations (0.05 − 0.8 vol. %). The samples were used as the coolant fluid in a specific car radiator to evaluate the thermal performance of nanofluid and base fluid in the system. Five different and novel Machine-learning methods were applied over experimental data to predict the Nusselt number and output temperature of the coolant in the system. These methods are M5 tree regression, Linear and Cubic Multi-Variate Adaptive Regression Splines (MARS), Radial Basis Function (RBF), and Artificial Neural Network-Levenberg Marquardt Algorithm... 

    Thermo-hydraulic performance enhancement of nanofluid-based linear solar receiver tubes with forward perforated ring steps and triangular cross section; a numerical investigation

    , Article Applied Thermal Engineering ; Volume 169 , March , 2020 Mahmoudi, A ; Fazli, M ; Morad, M. R ; Gholamalizadeh, E ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Cylindrical pipes are installed to a line-focusing solar system with a linear receiver tube for transmitting thermal energy to the working fluid. In this study, the effects of a novel forward ring step inside circular pipes on the heat transfer performance of linear solar receiver tubes were investigated using computational fluid dynamics. The rings are perforated, and their cross section is triangular. Although the applied heat flux is consistent with a solar collector with a linear receiver tube, the analysis can be performed for any given heat flux distribution on circular pipes. The model was verified by comparing the predicted Nusselt numbers to those of the Gnielinski correlation, and... 

    In vitro bioactivity and corrosion resistance enhancement of Ti-6Al-4V by highly ordered TiO 2 nanotube arrays

    , Article Journal of the Australian Ceramic Society ; Volume 55, Issue 1 , 2019 , Pages 187-200 ; 25101560 (ISSN) Sarraf, M ; Sukiman, N. L ; Bushroa, A. R ; Nasiri Tabrizi, B ; Dabbagh, A ; Abu Kasim, N. H ; Basirun, W. J ; Sharif University of Technology
    Springer International Publishing  2019
    Abstract
    In the present study, the structural features, corrosion behavior, and in vitro bioactivity of TiO 2 nanotubular arrays coated on Ti–6Al–4V (Ti64) alloy were investigated. For this reason, Ti64 plates were anodized in an ammonium fluoride electrolyte dissolved in a 90:10 ethylene glycol and water solvent mixture at room temperature under a constant potential of 60 V for 1 h. Subsequently, the anodized specimens were annealed in an argon gas furnace at 500 and 700 °C for 1.5 h with a heating and cooling rate of 5 °C min −1 . From XRD analysis and Raman spectroscopy, a highly crystalline anatase phase with tetragonal symmetry was formed from the thermally induced crystallization at 500 °C.... 

    Improved H2 production from the APR of polyols in a microreactor utilizing Pt supported on a CeO2–Al2O3 structured catalyst

    , Article International Journal of Hydrogen Energy ; Volume 43, Issue 48 , 2018 , Pages 21777-21790 ; 03603199 (ISSN) Entezary, B ; Kazemeini, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this research, the activity and selectivity of a platinum-based catalyst for H2 production through aqueous phase reforming (APR) in a fixed-bed reactor (FBR) as well as, a structured catalyst microreactor (MR) were investigated. In this venue, first, an in-house designed MR was fabricated and the catalytic material was deposited on the channel walls of this steel made reactor. After verification of the stability of the coated layer, the prepared reactor was employed to investigate the APR reaction. In this regard, APR of the ethylene glycol and glycerol over Pt/Al2O3 and Pt/CeO2–Al2O3 catalyst were conducted in an MR and FBR. Obtained results demonstrated that employing Pt/CeO2–Al2O3 as a... 

    Photo-curable acrylate polyurethane as efficient composite membrane for CO2 separation

    , Article Polymer ; Volume 149 , 2018 , Pages 178-191 ; 00323861 (ISSN) Molavi, H ; Shojaei, A ; Mousavi, S. A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The current investigation was to present composite membranes with strong interfacial adhesion between top polymeric selective layer and the bottom micro-porous support layer with appropriate gas permeation behavior and practically suitable processing characteristics. To this end, a series of acrylate-terminated polyurethanes (APUs) based on poly (ethylene glycol) (PEG) with different molecular weights (Mn) of 600, 1000, 1500, 2000 and 4000 g/mol, toluene diisocyanate (TDI), and 2-hydroxyethyl methacrylate (HEMA) were synthesized. Composite membranes were prepared with UV-curable acrylate-terminated polyurethane/acrylate diluent (APUAs) as selective layer and polyester/polysulfone (PS/PSF) as... 

    Engineering folate-targeting diselenide-containing triblock copolymer as a redox-responsive shell-sheddable micelle for antitumor therapy in vivo

    , Article Acta Biomaterialia ; Volume 76 , 2018 , Pages 239-256 ; 17427061 (ISSN) Behroozi, F ; Abdkhodaie, M. J ; Sadeghi Abandansari, H ; Satarian, L ; Molazem, M ; Al Jamal, K. T ; Baharvand, H ; Sharif University of Technology
    Acta Materialia Inc  2018
    Abstract
    The oxidation-reduction (redox)–responsive micelle system is based on a diselenide-containing triblock copolymer, poly(ε-caprolactone)-bis(diselenide-methoxy poly(ethylene glycol)/poly(ethylene glycol)-folate) [PCL-(SeSe-mPEG/PEG-FA)2]. This has helped in the development of tumor-targeted delivery for hydrophobic anticancer drugs. The diselenide bond, as a redox-sensitive linkage, was designed in such a manner that it is located at the hydrophilic–hydrophobic hinge to allow complete collapse of the micelle and thus efficient drug release in redox environments. The amphiphilic block copolymers self-assembled into micelles at concentrations higher than the critical micelle concentration (CMC)...