Loading...
Search for: ftir
0.008 seconds
Total 107 records

    Simple and green oxidation of cyclohexene to adipic acid with an efficient and durable silica-functionalized ammonium tungstate catalyst

    , Article Catalysis Communications ; Vol. 43 , 5 January , 2014 , pp. 169-172 Vafaeezadeh, M ; Mahmoodi Hashemi, M ; Sharif University of Technology
    Abstract
    A novel silica-functionalized ammonium tungstate interphase catalyst has been reported as a non-nitric acid route for adipic acid production from one-pot oxidative cleavage of 30% hydrogen peroxide and catalytic amounts of p-toluenesulfonic acid (PTSA). The catalyst has been simply prepared by commercially available starting material. The structure of the catalyst has been investigated using FT-IR spectroscopy, atomic absorption, TEM, SEM and XRD analysis. The catalyst has shown good to high activity even up to 10 runs of reaction. Simple preparation of the catalyst, avoids using harmful phase transfer catalyst (PTC) and/or chlorinated additives are among the other benefits of this work  

    Polarity adjustment of a nanosilica-functionalized polyamine modified by ionic liquid for removal of Cu2+ from aqueous solutions

    , Article RSC Advances ; Volume 6, Issue 17 , 2016 , Pages 14128-14133 ; 20462069 (ISSN) Vafaeezadeh, M ; Mahmoodi Hashemi, M ; Ghavidel, N ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    The current work deals with modification of the surface of a silica-polyamine with amine-based ionic liquid (IL) and its application for removal of Cu2+ from an aqueous media. The absorbent is simply prepared from commercially available reagents. The material is characterized by FT-IR spectroscopy, thermogravimetric analysis (TGA), N2 adsorption-desorption, and transmission electronic microscopy (TEM). Effects of several parameters on absorption efficiency, as well as activity of the absorbent to other metals, are also investigated. Moreover, the reusability of the absorbent is studied at the optimized condition. © The Royal Society of Chemistry 2016  

    Investigation of Tabas anthracite coal devolatilization: Kinetics, char structure and major evolved species

    , Article Thermochimica Acta ; Volume 654 , 2017 , Pages 74-80 ; 00406031 (ISSN) Toloue Farrokh, N ; Askari, M ; Fabritius, T ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    The pyrolysis of low-volatile Tabas anthracite coal was investigated by thermogravimetric technique (TGA) in the temperature range from ambient to 1100 °C under non-isothermal heating conditions (1.5, 3, and 7 °C/min heating rates). Higher heating rates showed a small retarding effect on devolatilization toward higher temperatures. Iso-conversional method was used for the kinetic study of non-isothermal Thermogravimetric data. Activation energy calculated for coal conversion of 20–80% was about 319 kJ/mol which may be a result of stable ordered structure of this type of coal. Analysis of evolved gases by Fourier transform infrared spectrometry (FTIR) in 7 °C/min heating rate was conducted... 

    Polyphosphate-reduced graphene oxide on Ni foam as a binder free electrode for fabrication of high performance supercapacitor

    , Article Electrochimica Acta ; Volume 296 , 2019 , Pages 130-141 ; 00134686 (ISSN) Talebi, M ; Asen, P ; Shahrokhian, S ; Ahadian, M. M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Polyphosphate reduced graphene oxide on Ni foam (PPO-RGO/NF) is synthesized by varying weight ratios of Na5P3O10 (PO): graphene oxide (GO) with a simple, scalable and low cost method through freeze-drying of the PO-GO/NF followed by thermal treatment of the prepared electrodes. The resulting samples are characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), Brunauer-Emmett-Teller (BET), and raman spectroscopy methods. The results show that the weight ratio of PO:GO, considerably affect the... 

    A new insight to the assessment of asphaltene characterization by using fortier transformed infrared spectroscopy

    , Article Journal of Petroleum Science and Engineering ; Volume 205 , 2021 ; 09204105 (ISSN) Taherian, Z ; Saeedi Dehaghani, A ; Ayatollahi, S ; Kharrat, R ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    This research aims to present asphaltene fraction of oil by FTIR spectrum technique. For this purpose, three different oil samples with various SARA contents and almost identical API degrees were utilized in this research. Two asphaltenic oil samples were referred to as ‘A’ and ‘B’, and the aliphatic oil sample was named as ‘C’. First of all, the asphaltene fraction was extracted through the IP-143 test. The possible chemical bonds and functional groups were identified through NMR tests. Then, the FTIR spectrums of the oil samples and the extracted corresponding asphaltene fractions were taken. The interpretations were used to find the functional groups in the FTIR of the oil samples that... 

    The mechanistic investigation on the effect of the crude oil /brine interaction on the interface properties: A study on asphaltene structure

    , Article Journal of Molecular Liquids ; Volume 360 , 2022 ; 01677322 (ISSN) Taherian, Z ; Saeedi Dehaghani, A ; Ayatollahi, S ; Kharrat, R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Despite many attempts to study the interaction of fluids in low-salinity flooding, they do not examine the principles of interphasic transition phenomena. This study aims to provide a new understanding of liquid–liquid interactions during the low-salinity water interaction through a series of experiments on the oil, emulsion, and aqueous phase. Three samples of crude oils with different asphaltene concentrations and structures with known physical properties are in contact with different solutions. The brine pH, conductivity, and crude oil viscosity experiments before and after contacting the oil with brine showed that the heteroatom concentration and compaction of crude oil asphaltene... 

    Facile synthesis of N-doped hollow carbon nanospheres wrapped with transition metal oxides nanostructures as non-precious catalysts for the electro-oxidation of hydrazine

    , Article Journal of Electroanalytical Chemistry ; Volume 873 , 2020 Taghaddosi, S ; Rezaee, S ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In the present work, N-doped hollow carbon nanospheres (N-HCNSs) is prepared by direct carbonization of polyaniline-co-polypyrrole (PACP) hollow spheres without template needing. Two different NiO nanostructures (nanosheets and nanowires) are prepared by forming a shell around the N-HCNSs via simple hydrothermal/calcination processes (NiO-NSs@N-HCNSs and NiO-NWs@N-HCNSs). The morphology and structure of the nanostructures are characterized using field emission scanning electron microscopy (FE-SEM), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD). The prepared nanocomposites are used as catalysts for the electrocatalytic... 

    Effect of chemical treatment of Teflon powder on the properties of polyamide 66/Teflon composites prepared by melt mixing

    , Article Macromolecular Research ; Volume 19, Issue 6 , June , 2011 , Pages 613-621 ; 15985032 (ISSN) Shojaei, A ; Gholamalipour, S ; Sharif University of Technology
    2011
    Abstract
    The surface defluorination of Teflon in powdery form was performed using a chemical treatment. The reaction parameters including the reaction time, sodium, naphthalene concentrations were optimized using a Taguchi method to obtain maximum functionality on the particles surface. The surface functionality of the treated particles was analyzed by FTIR, energy dispersive X-ray analysis (EDX) and surface energy. Both treated (g-PTFE) and untreated (PTFE) Teflon were added to polyamide 66 (PA66) at various loadings up to 6 wt%. Mechanical, differential scanning calorimetry (DSC) and tribological analyses for different PA66/Teflon composites were carried out. The chemical treatment enhanced the... 

    Adsorption of hydrocarbons on modified nanoclays

    , Article IOP Conference Series: Materials Science and Engineering, 14 November 2010 through 18 November 2010, Osaka ; Volume 18, Issue SYMPOSIUM 12 , 2011 ; 17578981 (ISSN) Sharafimasooleh, M ; Bazgir, S ; Tamizifar, M ; Nemati, A ; Sharif University of Technology
    2011
    Abstract
    In this study organically modified nanoclay were prepared by exchanging of the cetyltrimethylammonium (CTAB), with inorganic/metal ions/cations in montmorillonite structure. To investigate the influence of the amount of modifier on basal spacing and subsequent removal efficiency of hydrocarbon, different amount of modifier was used. The modified and unmodified nanoclays characterized by XRD, CHN and FTIR techniques. The X-ray diffraction results showed that the interlayer spacing of CTAB-modified clays increased from 12 to 22Å. The effectiveness of the sorbent materials for sorption of a range of products was investigated using crude oil, kerosene, gasoline and toluene. The process... 

    Design of pH-responsive nanoparticles of terpolymer of poly(methacrylic acid), polysorbate 80 and starch for delivery of doxorubicin

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 101 , January , 2013 , Pages 405-413 ; 09277765 (ISSN) Shalviri, A ; Chan, H. K ; Raval, G ; Abdekhodaie, M. J ; Liu, Q ; Heerklotz, H ; Wu, X. Y ; Sharif University of Technology
    2013
    Abstract
    This work focused on the design of new pH-responsive nanoparticles for controlled delivery of anticancer drug doxorubicin (Dox). Nanoparticles of poly(methacrylic acid)-polysorbate 80-grafted starch (PMAA-PS 80-g-St) were synthesized by using a one-pot method that enabled simultaneous grafting of PMAA and PS 80 onto starch and nanoparticle formation in an aqueous medium. The particles were characterized by FTIR, 1H NMR, TEM, DLS, and potentiometric titration. Dox loading and in vitro release from the nanoparticles were investigated. The FTIR and 1H NMR confirmed the chemical composition of the graft terpolymer. The nanoparticles were relatively spherical with narrow size distribution and... 

    Plasma effects on anti-felting properties of wool fabrics

    , Article Surface and Coatings Technology ; Volume 205, Issue SUPPL. 1 , December , 2010 , Pages S349-S354 ; 02578972 (ISSN) Shahidi, S ; Rashidi, A ; Ghoranneviss, M ; Anvari, A ; Wiener, J ; Sharif University of Technology
    2010
    Abstract
    Low temperature plasma (LTP) is nowadays an intensively investigated superficial treatment of wool. In this work we have investigated the effect of LTP on wool fabric under different conditions. The effect of the position of samples inside the reactor and the kind of gases used as discharge medium has been also investigated. The results show that not only the topography of the surface is modified but also the chemical composition of the surface. It is shown that the hydrophilicity of the samples and also their shrink resistance and anti-felting behavior have improved significantly under LTP treatment. The results show that the shrinkage of 30.1% for untreated samples has reduced to about... 

    Ni(II) 1D-coordination polymer/C 60 -modified glassy carbon electrode as a highly sensitive non-enzymatic glucose electrochemical sensor

    , Article Applied Surface Science ; Volume 478 , 2019 , Pages 361-372 ; 01694332 (ISSN) Shahhoseini, L ; Mohammadi, R ; Ghanbari, B ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    A new non-enzymatic sensor for glucose is prepared by using of Ni(II)-one dimensional coordination polymer (Ni(II)-Cp) and C 60 . The Ni(II)-Cp prepared by slow diffusion and evaporation of two solution layers of NiCl 2 and diaza-macrocycle bearing two pyridine side arms (as the reported tecton) in DMF. The Ni(II)-Cp was characterized by powder x-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) as well as Fourier transform infrared spectroscopy (FT-IR). C 60 as modified was added to Ni(II)-Cp for improving the electrical and chemical stability of the composite. The newly assembled Ni(II)-Cp/C 60 also coated on glassy carbon electrode (GC) to... 

    Decorative reduced graphene oxide/C3N4/Ag2O/conductive polymer as a high performance material for electrochemical capacitors

    , Article Applied Surface Science ; Volume 447 , 2018 , Pages 374-380 ; 01694332 (ISSN) Shabani Shayeh, J ; Salari, H ; Daliri, A ; Omidi, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Here in, reduced graphene oxide/g-C3N4/Ag2O nano structure (RGO/CAO) was decorated through a facile and simple chemical method. After that RGO/CAO nano structure combined with poly aniline electrochemically to form a composite electrode. Several physicochemical techniques were applied to characterize the composite electrode such as X-ray Diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Furthermore, several electrochemical techniques were used to study the performance of composite electrode as an electrochemical capacitor. Results show that RGO/CAO nano... 

    Room temperature synthesis of highly crystalline TiO2 nanoparticles

    , Article Materials Letters ; Volume 92 , February , 2013 , Pages 287-290 ; 0167577X (ISSN) Sasani Ghamsari, M ; Radiman, S ; Azmi Abdul Hamid, M ; Mahshid, S ; Rahmani, S ; Sharif University of Technology
    2013
    Abstract
    Hydrolysis of titanium isopropoxide alcoholic solution has been used to prepare the crystallized TiO2 nanoparticles at low temperature. Concentration ratio was used to control the pathway of sol-gel process and change the physical characteristics of TiO2 nanopowders. The crystallinity, morphology and size of aged TiO2 nanopowders were studied by X-ray diffraction and Scanning Electron Microscopy (SEM). FTIR and, Thermo-Gravimetric (TG) analysis were used to identify the functional groups and thermal behavior of prepared samples. Experimental results have shown that high crystalline TiO2 nanomaterial with anatase polymorph can be obtained at room temperature. It has been found that the... 

    Exploration of an easily synthesized fluorescent probe for detecting copper in aqueous samples

    , Article Dalton Transactions ; Volume 46, Issue 45 , 2017 , Pages 15827-15835 ; 14779226 (ISSN) Sanmartín Matalobos, J ; García Deibe, A. M ; Fondo, M ; Zarepour Jevinani, M ; Domínguez González, M. R ; Bermejo Barrera, P ; Sharif University of Technology
    Royal Society of Chemistry  2017
    Abstract
    An easily synthesized fluorescent probe for detecting copper in aqueous samples, with a short response time and at neutral pH, has been investigated. Through the chelation of Cu2+ ions or by binding to CuO nanoparticles, the fluorescence emission of the 2-(aminomethyl)aniline derivative H2L is quenched by over 50%. Spectroscopic determination of the association constants of H2L with some metal ions showed that the ligand has a higher affinity toward Cu2+ than toward other d-block metal ions. The comparative bonding ability of the aniline-based fluorescent probe in d-block metal complexes was studied in solution by a combination of UV-Vis, 1H NMR and mass spectrometry analyses. Besides these,... 

    Deep oxidative desulfurization via rGO-immobilized tin oxide nanocatalyst: Experimental and theoretical perspectives

    , Article Advanced Powder Technology ; Volume 33, Issue 3 , 2022 ; 09218831 (ISSN) Salmanzadeh Otaghsaraei, S ; Kazemeini, M ; Hasannia, S ; Ekramipooya, A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this contribution, reduced grapheme oxides (rGO) with immobilized tin oxide (SnO2) nanocatalysts were synthesized via the Incipient Wetness Impregnation (IWI) method. To characterize the SnO2/rGO composites, several analyses including the; XRD, Raman, FTIR, ICP-OES, BET-BJH, XPS, TEM, and TPD were utilized. Then the effects of parameters including reaction time, total metal loading, and the initial sulfur concentration of model fuel in the dibenzothiophene (DBT) oxidation desulfurization process were evaluated. After determining the optimal conditions for the aforementioned parameters, the influences of 3 effective factors of the molar ratio of oxidant/substrate (O/S), the molar ratio of... 

    In-depth characterization of light, medium and heavy oil asphaltenes as well as asphaltenes subfractions

    , Article Fuel ; Volume 324 , 2022 ; 00162361 (ISSN) Salehzadeh, M ; Husein, M. M ; Ghotbi, C ; Dabir, B ; Taghikhani, V ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Asphaltenes, and their related issues, have been the focus of many literature investigations. However, in-depth analysis of asphaltenes structure and its relation to asphaltenes stability has been considered by fewer studies. In this research, extensive analysis of the structure of asphaltenes extracted from light, medium, and heavy oils is provided, together with analysis of three subfractions of the medium oil asphaltene having the least, intermediate, and highest solubilities. To this end, elemental analysis, EDX, mass spectroscopy, FTIR, NMR, XRD, and SEM results were collected. Higher hydrogen content and hydrogen/carbon atomic ratio, lower aromatic nature and olefinic entities were... 

    Contribution of water-in-oil emulsion formation and pressure fluctuations to low salinity waterflooding of asphaltic oils: A pore-scale perspective

    , Article Journal of Petroleum Science and Engineering ; Volume 203 , 2021 ; 09204105 (ISSN) Salehpour, M ; Sakhaei, Z ; Salehinezhad, R ; Mahani, H ; Riazi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    During the low salinity waterflooding (LSWF) of a viscous asphaltic oil reservoir, fluid-fluid interactions have a large influence on the fluid flow, pore-scale events, and thus oil recovery efficiency and behavior. In-situ water-in-oil (W/O) emulsion formation is a consequence of crude oil and brine interfacial activities. Despite the published studies, the pore-scale mechanisms of W/O emulsion formation and the role of injected brine salinity, injection rate, and pore-scale heterogeneity on emulsion formation and stability requires a deeper understanding. To address these, a series of static and dynamic micro-scale experiments were performed. The salinity dependent oil-brine interactions... 

    Template-directed hydrothermal synthesis of dandelion-like hydroxyapatite in the presence of cetyltrimethylammonium bromide and polyethylene glycol

    , Article Ceramics International ; Volume 35, Issue 7 , 2009 , Pages 2563-2569 ; 02728842 (ISSN) Salarian, M ; Solati Hashjin, M ; Shafiei, S. S ; Salarian, R ; Nemati, Z. A ; Sharif University of Technology
    2009
    Abstract
    A template-directed synthetic method, using surfactant cetyltrimethylammonium bromide (CTAB) as a template and co-surfactant polyethylene glycol (PEG600) as a co-template under hydrothermal conditions, has been applied to obtain dandelion-like HAp. The morphology, size, crystalline phase, chemical composition, physical characteristics, and thermal behavior of the product were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), Fourier ransform infrared spectroscopy (FTIR), induced coupled plasma spectroscopy (ICP), BET (Brunauer, Emmett, and Teller) method, and simultaneous thermal analysis (STA). SEM and TEM... 

    Effect of synthesis temperature of magnetic–fluorescent nanoparticles on properties and cellular imaging

    , Article Journal of Inorganic and Organometallic Polymers and Materials ; Volume 30, Issue 11 , 2020 , Pages 4597-4605 Sahebalzamani, H ; Mehrani, K ; Madaah Hosseini, H. R ; Zare, K ; Sharif University of Technology
    Springer  2020
    Abstract
    The excellent photoluminescent properties of Fe3O4-graphene quantum dots (Fe3O4/GQD) nanoparticles prepared at 30 and 90 °C have made them as promising optical probes for imaging. Herein, the cytotoxicity of GQD and Fe3O4/GQD nanoparticles in L929 cells was investigated using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide] assay. The cellular apoptosis or necrosis was then evaluated by flow cytometry analysis. The Fe3O4/GQD nanoparticles were characterized by transmission electron microscopy (TEM), Raman spectroscopy (Raman), Fourier-transform infrared spectroscopy (FT-IR), photoluminescence (PL). Characterization results obtained, clearly show that Fe3O4/GQD nanoparticles...