Loading...
Search for: ftir
0.006 seconds
Total 107 records

    A novel approach for preparation of CL-20 nanoparticles by microemulsion method

    , Article Journal of Molecular Liquids ; Vol. 193, issue , May , 2014 , pp. 83-86 Bayat, Y ; Zarandi, M ; Zarei, M. A ; Soleyman, R ; Zeynali, V ; Sharif University of Technology
    Abstract
    2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) as one of the high energy cage nitramines has been used in various propellants and explosive formulations. The performance of energetic materials depends on its particle size and shape. Therefore, in this research, microemulsion method has been applied for the preparation of CL-20 nanoparticles via oil in water (O/W) microemulsions. The optimized formulation contains water 45%, n-butyl acetate 20.5%, sodium dodecyl sulfate (SDS, as anionic surfactant) 6.5% and 2-propanol (as co-surfactant) 26.5%. CL-20 nanoparticles that were obtained by microemulsion method are spherical with an average diameter of 25 nm, based on TEM image.... 

    Investigation of synergistic effect of nano sized Ag/TiO2 particles on antibacterial, physical and mechanical properties of UV-curable clear coatings by experimental design

    , Article Progress in Organic Coatings ; Vol. 77, issue. 2 , February , 2014 , pp. 502-511 ; ISSN: 03009440 Labbani-Motlagh, A ; Bastani, S ; Hashemi, M. M ; Sharif University of Technology
    Abstract
    The synergistic effect of nano titanium dioxide (10 and 30 nm) and nano silver (10 nm) as antibacterial agents were investigated on UV curable clear coating. Antibacterial and physical-mechanical properties of coating were optimized using experimental design in response surface method. Twenty different samples of nano Ag and nano TiO2 were prepared in this method. Antibacterial properties on Gram-negative bacteria (Escherichia coli) were investigated. The results revealed that using equal amounts of two sizes of nano TiO2 promote the antibacterial activity of nano Ag. So, the coating shows strong activity against E. coli. Physical-mechanical properties such as surface hardness, abrasion... 

    Enhancing glass ionomer cement features by using the HA/YSZ nanocomposite: A feed forward neural network modelling

    , Article Journal of the Mechanical Behavior of Biomedical Materials ; Vol. 29 , January , 2014 , pp. 317-327 ; ISSN: 17516161 Rajabzadeh, G ; Salehi, S ; Nemati, A ; Tavakoli, R ; Solati Hashjin, M ; Sharif University of Technology
    Abstract
    Despite brilliant properties of glass ionomer cement (GIC), its weak mechanical property poses an obstacle for its use in medical applications. The present research aims to formulate hydroxyapatite/yttria-stabilized zirconia (HA/YSZ) in the composition of GIC to enhance mechanical properties and to improve fluoride release of GIC. HA/YSZ was synthesized via a sol-gel method and characterized by applying X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photo-emission spectroscopy (XPS) and simultaneous thermal analysis (STA) along with transmission electron microscopy (TEM) methods. The synthesized nanocomposite was mixed with GIC at a fixed composition of 5.... 

    Simple and green oxidation of cyclohexene to adipic acid with an efficient and durable silica-functionalized ammonium tungstate catalyst

    , Article Catalysis Communications ; Vol. 43 , 5 January , 2014 , pp. 169-172 Vafaeezadeh, M ; Mahmoodi Hashemi, M ; Sharif University of Technology
    Abstract
    A novel silica-functionalized ammonium tungstate interphase catalyst has been reported as a non-nitric acid route for adipic acid production from one-pot oxidative cleavage of 30% hydrogen peroxide and catalytic amounts of p-toluenesulfonic acid (PTSA). The catalyst has been simply prepared by commercially available starting material. The structure of the catalyst has been investigated using FT-IR spectroscopy, atomic absorption, TEM, SEM and XRD analysis. The catalyst has shown good to high activity even up to 10 runs of reaction. Simple preparation of the catalyst, avoids using harmful phase transfer catalyst (PTC) and/or chlorinated additives are among the other benefits of this work  

    Comparison of kinetic biodegradation of potato starch based and corn starch based low density polyethylene compound in aerated sludge

    , Article BioTechnology: An Indian Journal ; Volume 7, Issue 5 , 2013 , Pages 163-168 ; 09747435 (ISSN) Borghei, M ; Khoramnejadian, S ; Hejazi, B ; Sharif University of Technology
    2013
    Abstract
    The biodegradability rates of two different kinds of polyethylene bonded with corn and potato starch are studied in this paper. While it is usual to use soil as the environment for biodegradation, an aerated sludge tank was used in this studywhich offers a richermicrobialmediumand increases the rate of biodegradation. The biodegradability is determined by two ways: first, comparing differences in the weight change of two samples, one placed inside distilled water and the other placed in aerated sludge tank. Second test for biodegradation is by examination of FTIR spectroscopy. Through FTIR spectroscopy, the biodegradability rate and reduction in some of the existing bonds in polymer before... 

    Silica-supported DABCO-tribromide: A recoverable reagent for oxidation of alcohols to the corresponding carbonyl compounds

    , Article Scientia Iranica ; Volume 20, Issue 3 , 2013 , Pages 598-602 ; 10263098 (ISSN) Moghaddam, F. M ; Masoud, N ; Foroushani, B. K ; Saryazdi, S ; Ghonouei, N ; Daemi, E ; Sharif University of Technology
    2013
    Abstract
    In this study, 1,4-diazabicy lo[2.2.2] octane (DABCO) tribromide was immobilized on silica support by using 3-chloro propyl trimethoxy silane to obtain a silica-supported DABCO tribromide reagent. The synthesized reagent was characterized with elemental analysis, FT-IR spectroscopy, and thermo-gravimetric analysis (TGA). This reagent has been applied in the conversion of alcohol to corresponding carbonyl compounds. Alcohol oxidation reactions yield in 52-95%, and the reagent may be recycled five times with further bromine treatment  

    PLA microspheres-embedded pva hydrogels prepared by gamma-irradiation and freeze-thaw methods as drug release carriers

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; Volume 62, Issue 1 , 2013 , Pages 28-33 ; 00914037 (ISSN) Behnoodfar, D ; Dadbin, S ; Frounchi, M ; Sharif University of Technology
    2013
    Abstract
    A drug delivery system based on poly (vinyl alcohol) (PVA) hydrogels containing ibuprofen-loaded poly (lactic acid) (PLA) microspheres was developed to improve the release kinetics of this model drug. Gamma-irradiation and freeze-thawing were applied to prepare poly (vinyl alcohol) hydrogels. Properties and morphology of these composite hydrogels were investigated using FTIR, DSC, and SEM. In vitro release indicated that entrapment of the microspheres into the PVA hydrogels causes a reduction in both the release rate and the initial burst effect. PLA microspheres entrapped into the PVA hydrogels showed more suitable controlled release kinetics for drug delivery  

    Design of pH-responsive nanoparticles of terpolymer of poly(methacrylic acid), polysorbate 80 and starch for delivery of doxorubicin

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 101 , January , 2013 , Pages 405-413 ; 09277765 (ISSN) Shalviri, A ; Chan, H. K ; Raval, G ; Abdekhodaie, M. J ; Liu, Q ; Heerklotz, H ; Wu, X. Y ; Sharif University of Technology
    2013
    Abstract
    This work focused on the design of new pH-responsive nanoparticles for controlled delivery of anticancer drug doxorubicin (Dox). Nanoparticles of poly(methacrylic acid)-polysorbate 80-grafted starch (PMAA-PS 80-g-St) were synthesized by using a one-pot method that enabled simultaneous grafting of PMAA and PS 80 onto starch and nanoparticle formation in an aqueous medium. The particles were characterized by FTIR, 1H NMR, TEM, DLS, and potentiometric titration. Dox loading and in vitro release from the nanoparticles were investigated. The FTIR and 1H NMR confirmed the chemical composition of the graft terpolymer. The nanoparticles were relatively spherical with narrow size distribution and... 

    Room temperature synthesis of highly crystalline TiO2 nanoparticles

    , Article Materials Letters ; Volume 92 , February , 2013 , Pages 287-290 ; 0167577X (ISSN) Sasani Ghamsari, M ; Radiman, S ; Azmi Abdul Hamid, M ; Mahshid, S ; Rahmani, S ; Sharif University of Technology
    2013
    Abstract
    Hydrolysis of titanium isopropoxide alcoholic solution has been used to prepare the crystallized TiO2 nanoparticles at low temperature. Concentration ratio was used to control the pathway of sol-gel process and change the physical characteristics of TiO2 nanopowders. The crystallinity, morphology and size of aged TiO2 nanopowders were studied by X-ray diffraction and Scanning Electron Microscopy (SEM). FTIR and, Thermo-Gravimetric (TG) analysis were used to identify the functional groups and thermal behavior of prepared samples. Experimental results have shown that high crystalline TiO2 nanomaterial with anatase polymorph can be obtained at room temperature. It has been found that the... 

    Controlled microwave-assisted synthesis of ZnFe 2 O 4 nanoparticles and their catalytic activity for O-acylation of alcohol and phenol in acetic anhydride

    , Article Scientia Iranica ; Volume 19, Issue 6 , December , 2012 , Pages 1597-1600 ; 10263098 (ISSN) Matloubi Moghaddam, F ; Doulabi, M ; Saeidian, H ; Sharif University of Technology
    2012
    Abstract
    ZnFe2O4 nanoparticles have been successfully prepared through a controlled microwave-assisted co-precipitation. X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM) and Vibrating Sample Magnetometer (VSM) were used for the structural, morphological and magnetic investigation of the product. SEM micrographs of ZnFe2O4 nanopowder also reveal that nanoparticles have spherical shape. Average particle size was obtained as 12 nm from XRD. Catalytic activity of ZnFe2O4 nanopowder for O-acylation of alcohol and phenol has been investigated. A trace amount of ZnFe2O4 has been effectively used as a nanocatalyst for the acylation of alcohol and... 

    Protection of titanium metal by nanohydroxyapatite coating with zirconia and alumina second phases

    , Article Protection of Metals and Physical Chemistry of Surfaces ; Volume 48, Issue 6 , 2012 , Pages 688-691 ; 20702051 (ISSN) Family, R ; Solati Hashjin, M ; Nik, S. N ; Nemati, A ; Sharif Universty of Technology
    2012
    Abstract
    In this study hydroxyapatite (HA)/zirconia/alumina composite coatings on titanium metal was carried out using Sol-Gel dip coating and calcination process. Hydroxyapatite-Alumina-Zirconia sol, coated samples in three processes by changing final sol stirring time, aging time, calcination temperature of synthesized powder and prepared coating and rate of coating. Some parts of prepared sol were also synthesized and became powder in all three processes. Scanning electron microscopy was used to estimate the particle size of the surface and for morphological analysis. The functional group and crystallization characteristics of the powders were analyzed using (FTIR) and X-Ray diffraction (XRD).... 

    An investigation on the influence of milling time and calcination temperature on the characterization of nano cerium oxide powder synthesized by mechanochemical route

    , Article Materials Research Bulletin ; Volume 47, Issue 11 , 2012 , Pages 3586-3591 ; 00255408 (ISSN) Aminzare, M ; Amoozegar, Z ; Sadrnezhaad, S. K ; Sharif University of Technology
    2012
    Abstract
    The synthesis of nano-sized CeO 2 powder was investigated via mechanochemical reactions between hydrate cerium chloride and sodium hydroxide as the starting materials. The process was followed by a subsequent calcination procedure. Characterization of as-synthesized powder was performed using X-ray diffraction, FTIR spectroscopy, Brunner-Emmett-Teller (BET) nitrogen gas absorption, scanning electron microscopy (SEM) and particle size analyzer (PSA). The precursors were milled for different milling times and then were subjected to different heat treatment procedure at variable temperatures from 100 to 700 °C. According to the results, milling time and calcination temperatures induce... 

    Electrophoretic deposition of bioactive glass coating on 316L stainless steel and electrochemical behavior study

    , Article Applied Surface Science ; Volume 258, Issue 24 , 2012 , Pages 9832-9839 ; 01694332 (ISSN) Mehdipour, M ; Afshar, A ; Mohebali, M ; Sharif University of Technology
    Elsevier  2012
    Abstract
    In this research, submicron bioactive glass (BG) particles were synthesized by a sol-gel process and were then coated on a 316L stainless steel substrate using an electrophoretic deposition (EPD) technique. Stable suspension of bioactive glass powders in ethanol solvent was prepared by addition of triethanol amine (TEA), which increased zeta potential from 16.5 ± 1.6 to 20.3 ± 1.4 (mv). Thickness, structure and electrochemical behavior of the coating were characterized. SEM studies showed that increasing EPD voltage leads to a coating with more agglomerated particles, augmented porosity and micro cracks. The results of Fourier transformed infrared (FTIR) spectroscopy revealed the adsorption... 

    Synthesis of wide band gap nanocrystalline NiO powder via a sonochemical method

    , Article Ultrasonics Sonochemistry ; Volume 19, Issue 4 , 2012 , Pages 841-845 ; 13504177 (ISSN) Mohseni Meybodi, S ; Hosseini, S. A ; Rezaee, M ; Sadrnezhaad, S. K ; Mohammadyani, D ; Sharif University of Technology
    2012
    Abstract
    A sonochemistry-based synthesis method was used to produce nanocrystalline nickel oxide powder with ∼20 nm average crystallite diameter from Ni(OH)2 precursor. Ultrasound waves were applied to the primary solution to intensify the Ni(OH)2 precipitation. Dried precipitates were calcined at 320 °C to form nanocrystalline NiO particles. The morphology of the produced powder was characterized by transmission electron microscopy. Using sonochemical waves resulted in lowering of the size of the nickel oxide crystallites. FT-IR spectroscopy and X-ray diffraction revealed high purity well-crystallized structure of the synthesized powder. Photoluminescence spectroscopy confirmed production of a wide... 

    Characterization of PVDF/Nanoclay Nanocomposites Prepared by Melt, Solution, and Co-Precipitation Methods

    , Article International Journal of Polymer Analysis and Characterization ; Volume 17, Issue 4 , 2012 , Pages 291-301 ; 1023666X (ISSN) Rahmani, P ; Dadbin, S ; Frounchi, M ; Sharif University of Technology
    2012
    Abstract
    Poly (vinylidene fluoride) (PVDF) nanocomposites were prepared via melt, solution, and co-precipitation mixing methods using Cloisite 30B as organoclay. The results from X-ray diffraction patterns display intercalation or exfoliation of nanoclay depending on the nanocomposite preparation method. The solvent cast and co-precipitated samples showed exfoliation, while intercalation was observed in the nanocomposites prepared by melt mixing. Introducing organoclay induced formation of β-crystals in the PVDF nanocomposites as evidenced by XRD and FT-IR. FT-IR analysis indicated that the samples prepared by the co-precipitation method had a higher tendency for β phase formation, while the sample... 

    Synthesis and characterization of sol-gel derived hydroxyapatite-bioglass composite nanopowders for biomedical applications

    , Article Journal of Biomimetics, Biomaterials, and Tissue Engineering ; Volume 12, Issue 1 , 2012 , Pages 51-57 ; 16621018 (ISSN) Adibnia, S ; Nemati, A ; Fathi, M. H ; Baghshahi, S ; Sharif University of Technology
    2012
    Abstract
    The main purpose of this study is to prepare and characterize hydroxyapatite (HA)-10%wt bioglass (BG) composite nanopowders and its bioactivity. Composites of hydroxyapatite with synthesized bioglass are prepared at various temperatures. Suitable calcination temperature is chosen by evaluating of the phase composition. X-ray diffraction (XRD), Transmission electron microscopy (TEM) and Scanning electron microscopy (SEM) techniques are utilized to characterize the prepared nanopowders. The bioactivity of the prepared composite samples is evaluated in an in vitro study by immersion of samples in simulated body fluid (SBF) for predicted time. Fourier transformed infrared (FTIR) spectroscopy and... 

    Biological evaluation of a novel tissue engineering scaffold of Layered Double Hydroxides (LDHs)

    , Article Key Engineering Materials, 6 November 2011 through 9 November 2011 ; Volume 493-494 , November , 2012 , Pages 902-908 ; 10139826 (ISSN) ; 9783037852552 (ISBN) Fayyazbakhsh, F ; Solati Hashjin, M ; Shokrgozar, M. A ; Bonakdar, S ; Ganji, Y ; Mirjordavi, N ; Ghavimi, S. A ; Khashayar, P ; Sharif University of Technology
    2012
    Abstract
    Bone Tissue Engineering (BTE) composed of three main parts: scaffold, cells and signaling factors. Several materials and composites are suggested as a scaffold for BTE. Biocompatibility is one of the most important property of a BTE scaffold. In this work synthesis of a novel nanocomposite including layered double hydroxides (LDH) and gelatin is carried out and its biological properties were studied. The co-precipitation (pH=11) method was used to prepare the LDH powder, using calcium nitrate, Magesium nitrate and aluminum nitrate salts as starting materials. The resulted precipitates were dried. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron... 

    Photocatalytic activity of TiO 2-capped ZnO nanoparticles

    , Article Journal of Materials Science: Materials in Electronics ; Volume 23, Issue 2 , 2012 , Pages 361-369 ; 09574522 (ISSN) Lak, A ; Simchi, A ; Nemati, Z. A ; Sharif University of Technology
    Abstract
    Using a combined hydrothermal and sol-gel route, TiO 2 -capped ZnO nanoparticles with an average size of 60 nm were prepared. The titania shell was amorphous with a thickness of ∼10 nm. Formation of Zn 2TiO 4 phase at higher calcination temperature was noticed. Effects of Ti/Zn molar ratio and coating time on the thickness of TiO 2 shell and the photoactivity of the particles for decolorization of Methylene Blue (MB) under UV lamp irradiation (3 mW/cm 2) were investigated. The nanoparticles were characterized by X-ray diffraction, transmission electron microscopy, fourier-transform infrared spectrometry (FTIR), diffuse reflectance spectroscopy (DLS), and atomic absorption spectroscopy.... 

    Assembly of CeO 2-TiO 2 nanoparticles prepared in room temperature ionic liquid on graphene nanosheets for photocatalytic degradation of pollutants

    , Article Journal of Hazardous Materials ; Volume 199-200 , 2012 , Pages 170-178 ; 03043894 (ISSN) Ghasemi, S ; Setayesh, S. R ; Habibi Yangjeh, A ; Hormozi Nezhad, M. R ; Gholami, M. R ; Sharif University of Technology
    2012
    Abstract
    CeO 2-TiO 2 nanoparticles were prepared by the sol-gel process using 2-hydroxylethylammonium formate as room-temperature ionic liquid and calcined at different temperatures (500-700°C). CeO 2-TiO 2-graphene nanocomposites were prepared by hydrothermal reaction of graphene oxide with CeO 2-TiO 2 nanoparticles in aqueous solution of ethanol. The photocatalysts were characterized by X-ray diffraction, BET surface area, diffuse reflectance spectroscopy, scanning electron microscopy, and Fourier transformed infrared techniques. The results demonstrate that the room-temperature ionic liquid inhibits the anatase-rutile phase transformation. This effect was promoted by addition of CeO 2 to TiO 2.... 

    Preparation of acrylated agarose-based hydrogels and investigation of their application as fertilizing systems

    , Article Journal of Applied Polymer Science ; Volume 122, Issue 4 , November , 2011 , Pages 2424-2432 ; 00218995 (ISSN) Pourjavadi, A ; Sadat Afjeh, S ; Seidi, F ; Salimi, H ; Sharif University of Technology
    2011
    Abstract
    In this study, we attempt to synthesize novel acrylated agarose (ACAG)-based hydrogels with three different crosslinking densities. Acrylate groups were inserted onto agarose (AG) backbone through homogeneous reaction of acrylic monomers with AG backbone. Hydrogels were synthesized through radical copolymerization of a mixture of acrylic acid and 2-hydroxyethyl acrylate with ACAG in aqueous solution using ammonium persulfate as an initiator. Infrared spectroscopy (FTIR) was carried out to confirm the chemical structure of the hydrogel. Moreover, morphology of the samples was assessed by scanning electron microscopy. The equilibrium swelling capacities of synthesized hydrogels were evaluated...