Loading...
Search for: gallium-alloys
0.011 seconds

    Tight-binding description of patterned graphene

    , Article Semiconductor Science and Technology ; Volume 23, Issue 7 , 2008 ; 02681242 (ISSN) Gharekhanlou, B ; Alavi, M ; Khorasani, S ; Sharif University of Technology
    2008
    Abstract
    The existence of an energy gap of graphene is vital as far as nano-electronic applications such as nano-transistors are concerned. In this paper, we present a method for introducing arbitrary energy gaps through breaking the symmetry point group of graphene. We investigate the tight-binding approximation for the dispersion of π and π* electronic bands in patterned graphene including up to five nearest neighbors. As we show by applying special defects in graphene structure, an energy gap appears at Dirac points and the effective mass of fermions also becomes a function of the number of defects per unit cell. © 2008 IOP Publishing Ltd  

    The most optimal barrier height of InGaN light-emitting diodes

    , Article Applied Physics A: Materials Science and Processing ; Volume 127, Issue 2 , 2021 ; 09478396 (ISSN) Alam Varzaneh Isfahani, M. H ; Faez, R ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    In this paper, a novel structure is presented in order to decrease the polarization charges of quantum wells. The main purpose of this design is to make electron and hole wavefunctions closer to each other and to increase overlap integral following an increase of radiative recombination rates and internal quantum efficiency. Furthermore, carriers will be increased and become more balanced and identical which leads to an increase in efficiency of light-emitting diodes. The improvement of radiative recombination rates is studied in new structures. Energy bands diagram, carriers density, current density–voltage, and power density–current density are used to demonstrate the superior performance... 

    The most optimal barrier height of InGaN light-emitting diodes

    , Article Applied Physics A: Materials Science and Processing ; Volume 127, Issue 2 , 2021 ; 09478396 (ISSN) Alam Varzaneh Isfahani, M. H ; Faez, R ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    In this paper, a novel structure is presented in order to decrease the polarization charges of quantum wells. The main purpose of this design is to make electron and hole wavefunctions closer to each other and to increase overlap integral following an increase of radiative recombination rates and internal quantum efficiency. Furthermore, carriers will be increased and become more balanced and identical which leads to an increase in efficiency of light-emitting diodes. The improvement of radiative recombination rates is studied in new structures. Energy bands diagram, carriers density, current density–voltage, and power density–current density are used to demonstrate the superior performance... 

    Significant enhancement in the efficiency of photoconductive antennas using a hybrid graphene molybdenum disulphide structure

    , Article Journal of Nanophotonics ; Volume 10, Issue 3 , 2016 ; 19342608 (ISSN) Zangeneh Nejad, F ; Safian, R ; Sharif University of Technology
    SPIE  2016
    Abstract
    We propose a hybrid graphene molybdenum disulphide-based photoconductive antenna to overcome the restrictions of metallic photoconductive antennas and graphene-based photoconductive antennas, simultaneously. The structure is composed of a hybrid graphene-MoS2 strip as the antenna deposited on a low-temperature gallium arsenide substrate. A full-wave electromagnetic solver, namely, high frequency structural simulator (HFSS) is used to analyze the whole structure. It is shown that the proposed photoconductive antenna provides us with not only high input impedance and reconfigurability but also high values of matching efficiency and radiation efficiency. The impact of increasing MoS2 layers on... 

    Quantum well design and diffraction efficiency of quantum well light emitting diode

    , Article Photonic and Phononic Crystal Materials and Devices IX, San Jose, CA, 27 January 2009 through 29 January 2009 ; Volume 7223 , 2009 ; 0277786X (ISSN) Khoshnegar, M ; Eftekharian, A ; Sodagar, M ; Khorasani, S ; Adibi, A ; Sharif University of Technology
    2009
    Abstract
    In this work, a GaN-based quantum well LED is theoretically analyzed in a multi-layer structure composed of a quantum well embedded in a waveguide core surrounded by photonic crystal slab and a sapphire substrate. The electromagnetic eigenmodes are obtained throughout above structure via revised plane wave-scattering matrix method. The omnidirectional transmission and reflection are investigated for both TE and TM polarizations from diffraction channels in Ewald construction. Then, we introduced angular power density and calculated radiative modes extraction efficiency. All structural parameters, such as lattice geometry, lattice constant, photonic crystal thickness and filling factor, are... 

    Performance assessment of thermophotovoltaic application in steel industry

    , Article Solar Energy Materials and Solar Cells ; Volume 157 , 2016 , Pages 55-64 ; 09270248 (ISSN) Shoaei, E ; Sharif University of Technology
    Elsevier  2016
    Abstract
    The potential for using Thermophotovoltaic (1TPV) generators as an alternative for recovering energy losses in steel production industry is assessed. A mathematical model for the assessment of the performance of TPV application in the iron and steel industry has been developed. In order to support the mathematical model, a sample TPV apparatus in laboratory scale based on an IR emitter has been designed and assembled. The key modeling parameters of TPV generator include: the open circuit voltage, the short circuit current density and fill factor of the TPV cell. These parameters have been considered in the model as functions of several variables such as: the emitter (hot steel slab)... 

    Outside nominal operation analysis and design considerations of inverse-class-E power amplifier

    , Article IEEE Journal of Emerging and Selected Topics in Power Electronics ; 2017 ; 21686777 (ISSN) Lotfi, A ; Ershadi, A ; Medi, A ; Hayati, M ; Kazimierczuk, M. K ; Sekiya, H ; Katsuki, A ; Kurokawa, F ; Sharif University of Technology
    Abstract
    In this paper, design and analysis using analytical expressions for the inverse class-E power amplifier (PA) operating at the outside nominal operation, i.e., class-En PA, is presented. This operation is defined as non-zero current switch (n-ZCS) and non-zero derivative current switch (n-ZDCS) conditions. The generalized design equations as a function of design specifications, load-resistance and a given dc-supply voltage are derived. Two degrees of the design freedom achieved thanks to n-ZCS and n-ZDCS that are utilized for the simultaneous satisfaction of design specifications, such as peakswitch- voltage and peak-switch-current along with a given loadresistance. The output power... 

    Outside nominal operation analysis and design considerations of inverse-class-E power amplifier

    , Article IEEE Journal of Emerging and Selected Topics in Power Electronics ; Volume 6, Issue 1 , March , 2018 , Pages 165-174 ; 21686777 (ISSN) Lotfi, A ; Ershadi, A ; Medi, A ; Hayati, M ; Kazimierczuk, M. K ; Sekiya, H ; Katsuki, A ; Kurokawa, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    In this paper, design and analysis using analytical expressions for the inverse class-E power amplifier (PA) operating at the outside nominal operation, i.e., class- $ ext{E}-{mathrm{n}}$ PA, is presented. This operation is defined as nonzero current switch (n-ZCS) and nonzero-derivative-current switch (n-ZDCS) conditions. The generalized design equations as a function of design specifications, load resistance, and a given dc-supply voltage are derived. Two degrees of the design freedom achieved thanks to n-ZCS and n-ZDCS that are utilized for the simultaneous satisfaction of design specifications, such as peak-switch-voltage and peak-switch-current along with a given load resistance. The... 

    Modeling and parametric studies of magnetic shape memory alloy–based energy harvester

    , Article Journal of Intelligent Material Systems and Structures ; Volume 29, Issue 4 , 2018 , Pages 563-573 ; 1045389X (ISSN) Sayyaadi, H ; Rostami Najafabadi, H ; Askari Farsangi, M. A ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    This article presents a model to simulate the behavior of a magnetic shape memory alloy while harvesting vibratory energy. In this type of energy harvester, magnetic shape memory alloy element is placed in the air gap of a ferromagnetic core which conducts the magnetic flux. Two apparent coils are wound around a ferromagnetic core: one to produce bias magnetic field by passing a rectified electric current and the other to serve as an energy pickup coil. Applying compressive time-variant strain field to magnetic shape memory alloy element changes its dimensions and magnetic properties as well. Presence of the bias magnetic field returns magnetic shape memory alloy element to its initial state... 

    Intelligent clustering in wireless sensor networks

    , Article 1st International Conference on Networks and Communications, NetCoM 2009, 27 December 2009 through 29 December 2009, Chennai ; 2009 , Pages 12-17 ; 9780769539249 (ISBN) Heidari, E ; Movaghar, A ; Sharif University of Technology
    Abstract
    Minimization of the number of cluster heads in a wireless sensor network is a very important problem to reduce channel contention and to improve the efficiency of the algorithm when executed at the level of cluster-heads. In this paper, we propose an efficient method based on genetic algorithms (GAs) to solve a sensor network optimization problem. Long communication distances between sensors and a sink in a sensor network can greatly drain the energy of sensors and reduce the lifetime of a network. By clustering a sensor network into a number of independent clusters using a GA, we can greatly minimize the total communication distance, thus prolonging the network lifetime. Simulation results... 

    Growth of GaAs/AlxGa1- xAs layers by LPE method and their characterization by SIMS

    , Article EPJ Applied Physics ; Volume 55, Issue 3 , 2011 ; 12860042 (ISSN) Arghavani Nia, B ; Ghaderi, A ; Solaymani, S ; Oskoie, M ; Sharif University of Technology
    Abstract
    Growth of thin layers of compound semiconductors such as GaAs and Al x Ga1-x As was obtained by Liquid Phase Epitaxy (LPE) at 838-828 ° C in thickness range of 0.1-4.3 μm which was estimated by Scanning Electron Microscopy (SEM). By Secondary Ion Mass Spectroscopy (SIMS) measurements, type of impurity atoms and their density and uniformity with respect to thickness were measured. In this way we are sure that variation of impurity atoms such as Si, Te, Sn and Ge indicates that epilayers were formed uniformly and it demonstrated that the LPE growth was a suitable way to obtain a good quality of epitaxy layers. Amount of composition parameter x in the compound semiconductor AlxGa1-xAs was... 

    Fatigue properties of temperature gradient transient liquid phase diffusion bonded Al7075-T6 alloy

    , Article Transactions of Nonferrous Metals Society of China (English Edition) ; Volume 25, Issue 4 , April , 2015 , Pages 1073-1079 ; 10036326 (ISSN) Seyyed Afghahi, S. S ; Ekrami, A ; Farahany, S ; Jahangiri, A ; Sharif University of Technology
    Nonferrous Metals Society of China  2015
    Abstract
    Abstract Fatigue properties of Al7075-T6 alloy joined by temperature gradient transient liquid phase (TGTLP) diffusion bonding using liquid gallium interlayer was investigated. The fatigue specimen was jointed at 460 °C under 10 MPa pressure for 10 min. The TLP bonded samples were homogenized at 465 °C for 2 h and then T6-heat treated. The fatigue life of Al7075-T6 alloy was determined as 107 cycles under 90 MPa while the fatigue life of TLP bonded sample under this stress amplitude was 1.2×106 cycles, which is about 10% of the total Al7075 alloy fatigue life. The fatigue fracture surfaces of Al7075 sample and TGTLP bonded sample were studied using scanning electron microscope to... 

    Effect of solidification mechanism on microstructure and mechanical properties of joint in TLP bonded Al2024-T6 alloy

    , Article Science and Technology of Welding and Joining ; Volume 16, Issue 2 , Nov , 2011 , Pages 174-180 ; 13621718 (ISSN) Ghaznavi, M. M ; Ekrami, A ; Kokabi, A. H ; Sharif University of Technology
    2011
    Abstract
    Transient liquid phase (TLP) bonding of Al2024-T6 alloy, using gallium (Ga) interlayer, has been investigated. Bonding process was carried out at 470°C for 6 min, and homogenising temperature and time were 495°C and 2 h respectively. Conventional TLP bonding using Ga interlayer was not an appropriate method for joining of Al2024. In this method, the boundary between two Al2024 specimens was not fully eliminated during bonding because of solidification with planar front. In addition, bonding zone was depleted of copper, and as a result, tensile and shear strength of joint decreased to 200 and 110 MPa respectively. TLP bonding under temperature gradient offered very good results in bonding of... 

    Effect of bonding parameters on microstructure development during TGTLP bonding of Al7075 alloy

    , Article Philosophical Magazine ; Vol. 94, issue. 11 , Mar , 2014 , pp. 1166-1176 ; ISSN: 14786435 Afghahi, S. S. S ; Ekrami, A ; Farahany, S ; Jahangiri, A ; Sharif University of Technology
    Abstract
    The effect of temperature, pressure and bonding time on microstructure of temperature gradient transient liquid phase (TGTLP) diffusion bonded Al7075 alloy using liquid gallium interlayer was investigated. The selected bonding method relies on using the minimum amount of liquid gallium on faying surfaces, using a very fast heating rate to reach the joining temperature and imposing a temperature gradient across the bond region. The microstructure of the diffusion bonded joints was evaluated by light optical microscopy, scanning electron microscopy and energy dispersive spectroscopy (EDS). Results show that by increasing the temperature, pressure and time of joining, a more uniform... 

    Design of a GaN white light-emitting diode through envelope function analysis

    , Article IEEE Journal of Quantum Electronics ; Volume 46, Issue 2 , 2010 , Pages 228-237 ; 00189197 (ISSN) Khoshnegar, M ; Sodagar, M ; Eftekharian, A ; Khorasani, S ; Sharif University of Technology
    Abstract
    In this paper, we present an envelope function analysis technique for the design of the emission spectra of a white quantum-well light-emitting diode (QWLED). The nano- metric heterostructure that we are dealing with is a multiple QW, consisting of periods of three single QWs with various well thicknesses. With the aid of 6 × 6 Luttinger Hamiltonian, we employ the combination of two methods, k · p perturbation and the transfer matrix method, to acquire the electron and hole wave functions numerically. The envelope function approximation was considered to obtain these wave functions for a special basis set. While adjacent valence sub-bands have been determined approximately, the conduction... 

    Acoustic energy harvesting via magnetic shape memory alloys

    , Article Journal of Physics D: Applied Physics ; Volume 52, Issue 13 , 2019 ; 00223727 (ISSN) Askari Farsangi, M. A ; Zohoor, H ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    This study investigates acoustic energy harvesting via magnetic shape memory alloys (MSMA). The acoustic pressure impacts the neck of a Helmholtz resonator (HR) with a flexible face made of an elastic membrane. The design of the proposed energy harvester let radial force in the membrane be tunable. An MSMA is clamped to the membrane, and a proof mass is attached to the other end. The enhanced sound pressure vibrates the membrane and, therefore, excites the base of the MSMA specimen made of Ni-Mn-Ga to apply strain to it. Inserting strain onto the MSMA leads to variant reorientation and change of magnetization vectors, resulting in a change in flux passing through the pick-up coil. Therefore,... 

    A comparative study of NEGF and DDMS models in the GAA silicon nanowire transistor

    , Article International Journal of Electronics ; Volume 99, Issue 9 , 2012 , Pages 1299-1307 ; 00207217 (ISSN) Hosseini, R ; Fathipour, M ; Faez, R ; Sharif University of Technology
    Abstract
    In this article, we have used quantum and semiclassical models to analyse the electrical characteristics of gate all around silicon nanowire transistor (GAA SNWT). A quantum mechanical transport approach based on non-equilibrium Green's function (NEGF) method with the use of mode space approach in the frame work of effective mass theory has been employed for this analysis. Semiclassical drift diffusion mode space (DDMS) approach has also been used for the simulation of GAA SNWT. We have studied the short-channel effects on the performance of GAA SNWT and evaluated the variation of the threshold voltage, the subthreshold slope (SS), the leakage current and the drain-induced barrier lowering...