Loading...
Search for: gas-flow
0.007 seconds
Total 43 records

    Design and Prototyping of a Continuous Coaxial Nozzle for Uniforml Metal Powder Deposition at Various Angles

    , Ph.D. Dissertation Sharif University of Technology Nasiri Khansari, Mohammad Taghi (Author) ; Movahhedy, Mohammad Reza (Supervisor)
    Abstract
    Direct metal deposition (DMD) process is an additive manufacturing technology that is rapidly gaining laser importance due to its various capabilities in applications such as coating, repairing high-value damaged parts, rapid prototyping and even production in small quantities. Among the equipment needed for this process, nozzle is perhaps the most important component because its performance affect the efficiency of powders trapped in the molten pool, and is crucial to the quality of the deposited layer. The existing nozzle designs can be categorized in two groups; lateral and coaxial nozzles; and the coaxial ones are divided into continuous and discontinuous types. Coaxial nozzles have... 

    Thermal Analysis of Regenerative Cooling in Liquid Rocket Engines

    , M.Sc. Thesis Sharif University of Technology Azizi, Mahdi (Author) ; Kebriaei, Azadeh (Supervisor)
    Abstract
    In this thesis to simulate the behavior of liquid engine Thrust chamber of hot gas from a quasi one dimensional code used when the effects of the heat transfer and friction in those terma. As well as during the regenerative channel is simulated by considering the equation’s of continuity, momentum and energy for one dimensional, effects of increase temperature, pressure drop, change the density of coolant flow resulting from the warming which is visible along the way to increase the accuracy of calculation of the thermal flux output of the engine, use a suitable model for unclear boiling in consideration of heat transfer coefficient used coolant flow it has been. As well as coupling of heat... 

    Development of Compact Finite Difference Boltzmann Method for Simulating Compressible Rarefied Gas Flow

    , M.Sc. Thesis Sharif University of Technology Alemi Arani, Ali (Author) ; Hejranfar, Kazem (Supervisor) ; Fouladi, Nematollah (Co-Supervisor)
    Abstract
    In this work, a high-order accurate gas kinetic scheme based on the compact finite-difference Boltzmann method (CFDBM) is developed and applied for simulating the compressible rarefied gas flows. Here, the Shakhov model of the Boltzmann equation is considered and the spatial derivative term in the resulting equation is discretized by using the fourth-order compact finite-difference method and the time integration is performed by using the third-order TVD Runge-Kutta method. A filtering procedure with three discontinuity-detecting sensors is applied and examined for the stabilization of the solution method especially for the problems involving the discontinuity regions such as the shock. The... 

    Simulation of Compressible Rarefied Gas Flow using High-Order WENO Finite-difference Lattice Boltzmann Method

    , M.Sc. Thesis Sharif University of Technology Zamani Ashtiani, Shaghayegh (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    The goal of the present study is to simulate the compressible rarefied gas flow by using a high-order finite-difference lattice Boltzmann method. Here, a weighted essentially non-oscillatory lattice Boltzmann method (WENO-LBM) is applied for the solution of the compressible form of the LB equation with the Kataoka-Tsutahara model. The solution procedure is based on the discretization of the convection terms of the LB equation using the fifth-order finite-difference WENO scheme and the temporal term using the third-order explicit total variation diminishing Runge-Kutta scheme for both the continuum and rarefied gas flows. The treatment of implementing the no-slip and slip boundary conditions... 

    Numerical Simulation of One-Dimensional Compressible Flow with Real Gas Effects by Solving Boltzmann Equation Using High-Order Accurate Finitedifference Method

    , M.Sc. Thesis Sharif University of Technology Heydarzadeh, Amir Hossein (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In this study, the Shokov-BGK model of the Boltzmann equation is reformulated and generalized to consider the real gas effects. At first, the formulation is performed to consider an arbitrary specific heats ratio and the correct Prandtl number for polyatomic gases. Here, the resulting equations of the present formulation are numerically solved by applying the high-order finite-difference weighted essentially non-oscillatory (WENO) scheme. The present solution method is tested by computing the one-dimension Reiman problem with different specific heats ratios for a wide range of the Knudsen numbers. The results are compared with the available gas-kinetic results which show good agreement. It... 

    Flow Simulation to Assess Effects of Various Parameters on Performance of a Gas Ultrasonic Flowmeter

    , M.Sc. Thesis Sharif University of Technology Hosseini, Niloofar Sadat (Author) ; Mazaheri, Karim (Supervisor)
    Abstract
    In this thesis we are going to improve an ultrasonic flowmeter accuracy by considering the influence of different parameters like temperature, pressure, etc. Firstl of all different cases of flow condition in which ultrasonic flowmeter may work are specified, then velocity and temperature profile of pipe flow are determined using Fluent software. In thr next step ultrasonic pulses transmitted are simulated by the use of code written in Matlab to find wave travel time in the flow. Evetually an accurate relation of calibration for flowmeter is determined by the use of travel time and all other flow properties to evaluate the accuracy of flowmeter in diffent cases. Relation extracted can be... 

    Flare Gas Reduction in Oil Refineries

    , M.Sc. Thesis Sharif University of Technology Haji Hasan Tehrani, Elham (Author) ; Sattari, Sourena (Supervisor)
    Abstract
    Off-gas flows in refineries normally consist of hydrogen, methane and heavy hydrocarbons which are burnt in flare. While the demand for hydrogen in refineries is increased and the required hydrogen is provided by steam reforming or partial oxidation of methane or other hydrocarbons, recovering the hydrogen from off-gasses can reduce the refineries losses and optimize it economically. The four main processes for hydrogen recovery unit are the Pressure Swing Adsorption process, Membrane process, Cryogenic process, and absorption process. In the present project besides, considering the process flexibility, reliability, and refinery off-gas properties such as pressure, temperature and mole... 

    Using Numerical Simulation in the Design and Analysis of Spiral PEM Fuel Cells

    , M.Sc. Thesis Sharif University of Technology Arian Nazar, Mohammad Sadegh (Author) ; Kazem Zadeh Hannani, Siamak (Supervisor) ; Taghizadeh Manzari, Mehrdad (Supervisor) ; Roshandel, Ramin (Co-Advisor)
    Abstract
    The gas flow field geometry influences the transport phenomena inside PEMFCs and hence affecting their overall performance. Radial force and secondary flows resulting from curvature of the spiral channels in PEMFCs can improve mass transport limits and so does to their overall performance. Studying the effects of curvature of spiral channels on fuel cell performance and comparing them with similar designs is the aim of this thesis. The geometries are generated using concentric Archimedes’ spirals and categorized as axial or radial depending on the direction of the vector perpendicular to their MEA . Each category has five geometries which are the result of branching the main channel into... 

    Advancement in numerical study of gas flow and heat transfer in microscale

    , Article Journal of Thermophysics and Heat Transfer ; Volume 23, Issue 1 , 2009 , Pages 205-208 ; 08878722 (ISSN) Vakilipour, S ; Darbandi, M ; Sharif University of Technology
    2009
    Abstract
    The gas flow and heat transfer in a long microscopic channel with inlet-to-outlet pressure ratio equal to 8000 is studied. The second-order slip velocity and temperature jump boundary conditions are used, which are derived using a gas-surface interface mechanisms. The inlet is discretized to 19 nodes and they are clustered near the wall, while the longitudinal dimension in discretized to 1500 divisions using a nonuniform grid distribution. The current velocity profiles are found to have a good agreement with high-order analytical solutions, indicating that the current velocity perform second-order accuracy. The pressure distributions are found to perform higher nonlinearity as the... 

    On the importance of gel rigidity and coverage in a smart water shutoff treatment in gas wells

    , Article Journal of Natural Gas Science and Engineering ; Volume 31 , 2016 , Pages 808-818 ; 18755100 (ISSN) Sharifpour, E ; Escrochi, M ; Riazi, M ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    This paper addresses a conceptual study on different aspects of a novel smart treatment method for a relatively new challenge of saline water production from low permeability lenses of high flow gas wells. Selective sealing of such lenses along with minor effect on gas productivity usually faces practical difficulties due to the inherent permeability contrast. Engineered application of salt sensitive gellan biopolymer through a smart treatment scenario that includes a protective gas flow proved its ability for treating such challenge. This paper investigates the importance of the gel rigidity and its coverage in the smart treatment scenario through considering the brine salinity and the... 

    Preparation and characterization of PES and PSU membrane humidifiers

    , Article Journal of Membrane Science ; Volume 383, Issue 1-2 , 2011 , Pages 197-205 ; 03767388 (ISSN) Samimi, A ; Mousavi, S. A ; Moallemzadeh, A ; Roostaazad, R ; Hesampour, M ; Pihlajamaki, A ; Manttari, M ; Sharif University of Technology
    Abstract
    Polysulfone (PSU) and polyethersulfone (PES) porous membranes; and mixed polymer with nanoparticles TiO2, were prepared for air humidification. The mechanical properties and morphology of these membranes were studied by Tensile tester and SEM/EDX. The effects of membrane composition and operating factors on humidifier performance were investigated. The results revealed that the membrane composition and its structure have significant effect on humidification. The porous membranes with finger type cavities had higher humidification performance but lower mechanical properties. Water flux of the membranes was about 0.16-0.2L/hm2 at 25°C. Furthermore, adding 0.1wt% TiO2 nanoparticles to casting... 

    Thermodynamic analysis of slip flow forced convection through a microannulus

    , Article Journal of Thermophysics and Heat Transfer ; Volume 24, Issue 4 , Oce-Dec , 2010 , Pages 785-795 ; 08878722 (ISSN) Sadeghi, A ; Asgarshamsi, A ; Saidi, M. H ; Sharif University of Technology
    2010
    Abstract
    The present investigation is devoted to the second law of thermodynamics analysis of steady-state hydrodynamically and thermally fully developed laminar gasflow in a microannulus with constant but different wall heat fluxes. Slip velocity and temperature jump boundary conditions are usedtodescribe rarefaction effects. Viscous heating is also included for both the wall cooling and heating cases. Using already available velocity profile, closedform expressions are obtained for the transverse distribution of temperature and entropy generation rates. The results demonstrate that the effectof the wall heatfluxes ratioonentropy generation is negligible atlarge valuesofthe group parameter and... 

    Viscous dissipation and rarefaction effects on laminar forced convection in microchannels

    , Article Journal of Heat Transfer ; Volume 132, Issue 7 , 2010 , Pages 1-12 ; 00221481 (ISSN) Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    2010
    Abstract
    Fluid flow in microchannels has some characteristics, which one of them is rarefaction effect related with gas flow. In the present work, hydrodynamically and thermally fully developed laminar forced convection heat transfer of a rarefied gas flow in two microgeometries is studied, namely, microannulus and parallel plate microchannel. The rarefaction effects are taken into consideration using first-order slip velocity and temperature jump boundary conditions. Viscous heating is also included for either the wall heating or the wall cooling case. Closed form expressions are obtained for dimensionless temperature distribution and Nusselt number. The results demonstrate that for both geometries,... 

    Laminar forced convection in annular microchannels with slip flow regime

    , Article 7th International Conference on Nanochannels, Microchannels, and Minichannels, 22 June 2009 through 24 June 2009 ; Issue PART A , 2009 , Pages 353-361 ; 9780791843499 (ISBN) Sadeghi, A ; Asgarshamsi, A. H ; Saidi, M. H ; Sharif University of Technology
    Abstract
    Fluid flow and heat transfer at microscale have attracted an important research interest in recent years due to the rapid development of microelectromechanical systems (MEMS). Fluid flow in microdevices has some characteristics which one of them is rarefaction effect related with gas flow. In this research, hydrodynamically and thermally fully developed laminar rarefied gas flow in annular microducts is studied using slip flow boundary conditions. Two different cases of the thermal boundary conditions are considered, namely: uniform temperature at the outer wall and adiabatic inner wall (Case A) and uniform temperature at the inner wall and adiabatic outer wall (Case B). Using the previously... 

    Analysis of laminar flow in the entrance region of parallel plate microchannels for slip flow

    , Article Proceedings of the 7th International Conference on Nanochannels, Microchannels, and Minichannels 2009, ICNMM2009, 22 June 2009 through 24 June 2009, Pohang ; Issue PART A , 2009 , Pages 345-352 ; 9780791843499 (ISBN) Sadeghi, A ; Asgarshamsi, A ; Saidi, M. H ; Sharif University of Technology
    Abstract
    Microscale fluid dynamics has received intensive interest due to the emergence of microelectromechanical systems (MEMS) technology. Fluid flow in microdevices has some characteristics which one of them is rarefaction effect related with gas flow. In this work, the steady state laminar rarefied gas flow in the entrance region of parallel plate microchannels is investigated by the integral method with slip flow conditions at solid surface. The effects of Knudsen number on friction factor and Nusselt number are presented in graphical form as well as analytical form. Also the effect of Knudsen number on hydrodynamic entry length is presented. The results show that as Knudsen number increases the... 

    Permeability correlation with porosity and Knudsen number for rarefied gas flow in Sierpinski carpets

    , Article Journal of Natural Gas Science and Engineering ; Volume 56 , 2018 , Pages 549-567 ; 18755100 (ISSN) Rostamzadeh, H ; Salimi, M. R ; Taeibi Rahni, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In recent years, application of porous media is highlighted among researchers due to their wide range of usability in micro-scale problems, such as gas reservoirs, micro-filtering, heat exchangers, etc. With this respect, the accurate description of flow behavior using governing equations based on the continuum assumption is not valid since the mean free path is comparable to the characteristics length of the problem. For this purpose, a simple methodology for diffusion reflection boundary condition is developed and validated for two valuable benchmarks, namely micro-channel flow and fractal porous media, where the results were in good agreement with literature. Then, pore-scale simulation... 

    Pore-scale modeling of rarefied gas flow in fractal micro-porous media, using lattice Boltzmann method (LBM)

    , Article Journal of Thermal Analysis and Calorimetry ; 2019 , Pages 1-12 ; 13886150 (ISSN) Rostamzadeh, H ; Salimi, M. R ; Taeibi Rahni, M ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    Due to the widespread use of rarefied gas flow in micro-porous media in industrial and engineering problems, a pore-scale modeling of rarefied gas flow through two micro-porous media with fractal geometries is presented, using lattice Boltzmann method. For this purpose, square- and circular-based Sierpinski carpets with fractal geometries are selected due to their inherent behavior for real porous media. Diffusive reflection slip model is used and developed for these porous media through this study. With this respect, the planar Poiseuille flow is selected as a benchmark and validated with the literature. The effect of Knudsen number (Kn) on the permeability is investigated and compared in... 

    Pore-scale modeling of rarefied gas flow in fractal micro-porous media, using lattice Boltzmann method (LBM)

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 135, Issue 3 , 2019 , Pages 1931-1942 ; 13886150 (ISSN) Rostamzadeh, H ; Salimi, M. R ; Taeibi Rahni, M ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    Due to the widespread use of rarefied gas flow in micro-porous media in industrial and engineering problems, a pore-scale modeling of rarefied gas flow through two micro-porous media with fractal geometries is presented, using lattice Boltzmann method. For this purpose, square- and circular-based Sierpinski carpets with fractal geometries are selected due to their inherent behavior for real porous media. Diffusive reflection slip model is used and developed for these porous media through this study. With this respect, the planar Poiseuille flow is selected as a benchmark and validated with the literature. The effect of Knudsen number (Kn) on the permeability is investigated and compared in... 

    The effect of substrate surface roughness on ZnO nanostructures growth

    , Article Applied Surface Science ; Volume 257, Issue 8 , February , 2011 , Pages 3291-3297 ; 01694332 (ISSN) Roozbehi, M ; Sangpour, P ; Khademi, A ; Moshfegh, A. Z ; Sharif University of Technology
    2011
    Abstract
    The ZnO nanowires have been synthesized using vapor-liquid-solid (VLS) process on Au catalyst thin film deposited on different substrates including Si(1 0 0), epi-Si(1 0 0), quartz and alumina. The influence of surface roughness of different substrates and two different environments (Ar + H2 and N2) on formation of ZnO nanostructures was investigated. According to AFM observations, the degree of surface roughness of the different substrates is an important factor to form Au islands for growing ZnO nanostructures (nanowires and nanobelts) with different diameters and lengths. Si substrate (without epi-taxy layer) was found that is the best substrate among Si (with epi-taxy layer), alumina and... 

    Study of gas flow in micronozzles using an unstructured dsmc method

    , Article Proceedings of the 7th International Conference on Nanochannels, Microchannels, and Minichannels 2009, ICNMM2009, 22 June 2009 through 24 June 2009, Pohang ; Issue PART A , 2009 , Pages 417-424 ; 9780791843499 (ISBN) Roohi, E ; Darbandi, M ; Mirjalili, V ; ASME ; Sharif University of Technology
    Abstract
    The current research uses an unstructured direct simulation Monte Carlo (DSMC) method to numerically investigate supersonic and subsonic flow behavior in micro convergent-divergent nozzle over a wide range of rarefied regimes. The current unstructured DSMC solver has been suitably modified via using uniform distribution of particles, employing proper subcell geometry, and benefiting from an advanced molecular tracking algorithm. Using this solver, we study the effects of back pressure, gas/surface interactions (diffuse/specular reflections), and Knudsen number, on the flow field in micronozzles. We show that high viscous force manifesting in boundary layers prevents supersonic flow formation...