Loading...
Search for: gas-flow
0.007 seconds
Total 43 records

    Thermal Analysis of Regenerative Cooling in Liquid Rocket Engines

    , M.Sc. Thesis Sharif University of Technology Azizi, Mahdi (Author) ; Kebriaei, Azadeh (Supervisor)
    Abstract
    In this thesis to simulate the behavior of liquid engine Thrust chamber of hot gas from a quasi one dimensional code used when the effects of the heat transfer and friction in those terma. As well as during the regenerative channel is simulated by considering the equation’s of continuity, momentum and energy for one dimensional, effects of increase temperature, pressure drop, change the density of coolant flow resulting from the warming which is visible along the way to increase the accuracy of calculation of the thermal flux output of the engine, use a suitable model for unclear boiling in consideration of heat transfer coefficient used coolant flow it has been. As well as coupling of heat... 

    Flow Simulation to Assess Effects of Various Parameters on Performance of a Gas Ultrasonic Flowmeter

    , M.Sc. Thesis Sharif University of Technology Hosseini, Niloofar Sadat (Author) ; Mazaheri, Karim (Supervisor)
    Abstract
    In this thesis we are going to improve an ultrasonic flowmeter accuracy by considering the influence of different parameters like temperature, pressure, etc. Firstl of all different cases of flow condition in which ultrasonic flowmeter may work are specified, then velocity and temperature profile of pipe flow are determined using Fluent software. In thr next step ultrasonic pulses transmitted are simulated by the use of code written in Matlab to find wave travel time in the flow. Evetually an accurate relation of calibration for flowmeter is determined by the use of travel time and all other flow properties to evaluate the accuracy of flowmeter in diffent cases. Relation extracted can be... 

    Simulation of Compressible Rarefied Gas Flow using High-Order WENO Finite-difference Lattice Boltzmann Method

    , M.Sc. Thesis Sharif University of Technology Zamani Ashtiani, Shaghayegh (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    The goal of the present study is to simulate the compressible rarefied gas flow by using a high-order finite-difference lattice Boltzmann method. Here, a weighted essentially non-oscillatory lattice Boltzmann method (WENO-LBM) is applied for the solution of the compressible form of the LB equation with the Kataoka-Tsutahara model. The solution procedure is based on the discretization of the convection terms of the LB equation using the fifth-order finite-difference WENO scheme and the temporal term using the third-order explicit total variation diminishing Runge-Kutta scheme for both the continuum and rarefied gas flows. The treatment of implementing the no-slip and slip boundary conditions... 

    Flare Gas Reduction in Oil Refineries

    , M.Sc. Thesis Sharif University of Technology Haji Hasan Tehrani, Elham (Author) ; Sattari, Sourena (Supervisor)
    Abstract
    Off-gas flows in refineries normally consist of hydrogen, methane and heavy hydrocarbons which are burnt in flare. While the demand for hydrogen in refineries is increased and the required hydrogen is provided by steam reforming or partial oxidation of methane or other hydrocarbons, recovering the hydrogen from off-gasses can reduce the refineries losses and optimize it economically. The four main processes for hydrogen recovery unit are the Pressure Swing Adsorption process, Membrane process, Cryogenic process, and absorption process. In the present project besides, considering the process flexibility, reliability, and refinery off-gas properties such as pressure, temperature and mole... 

    Using Numerical Simulation in the Design and Analysis of Spiral PEM Fuel Cells

    , M.Sc. Thesis Sharif University of Technology Arian Nazar, Mohammad Sadegh (Author) ; Kazem Zadeh Hannani, Siamak (Supervisor) ; Taghizadeh Manzari, Mehrdad (Supervisor) ; Roshandel, Ramin (Co-Advisor)
    Abstract
    The gas flow field geometry influences the transport phenomena inside PEMFCs and hence affecting their overall performance. Radial force and secondary flows resulting from curvature of the spiral channels in PEMFCs can improve mass transport limits and so does to their overall performance. Studying the effects of curvature of spiral channels on fuel cell performance and comparing them with similar designs is the aim of this thesis. The geometries are generated using concentric Archimedes’ spirals and categorized as axial or radial depending on the direction of the vector perpendicular to their MEA . Each category has five geometries which are the result of branching the main channel into... 

    Development of Compact Finite Difference Boltzmann Method for Simulating Compressible Rarefied Gas Flow

    , M.Sc. Thesis Sharif University of Technology Alemi Arani, Ali (Author) ; Hejranfar, Kazem (Supervisor) ; Fouladi, Nematollah (Co-Supervisor)
    Abstract
    In this work, a high-order accurate gas kinetic scheme based on the compact finite-difference Boltzmann method (CFDBM) is developed and applied for simulating the compressible rarefied gas flows. Here, the Shakhov model of the Boltzmann equation is considered and the spatial derivative term in the resulting equation is discretized by using the fourth-order compact finite-difference method and the time integration is performed by using the third-order TVD Runge-Kutta method. A filtering procedure with three discontinuity-detecting sensors is applied and examined for the stabilization of the solution method especially for the problems involving the discontinuity regions such as the shock. The... 

    Design and Prototyping of a Continuous Coaxial Nozzle for Uniforml Metal Powder Deposition at Various Angles

    , Ph.D. Dissertation Sharif University of Technology Nasiri Khansari, Mohammad Taghi (Author) ; Movahhedy, Mohammad Reza (Supervisor)
    Abstract
    Direct metal deposition (DMD) process is an additive manufacturing technology that is rapidly gaining laser importance due to its various capabilities in applications such as coating, repairing high-value damaged parts, rapid prototyping and even production in small quantities. Among the equipment needed for this process, nozzle is perhaps the most important component because its performance affect the efficiency of powders trapped in the molten pool, and is crucial to the quality of the deposited layer. The existing nozzle designs can be categorized in two groups; lateral and coaxial nozzles; and the coaxial ones are divided into continuous and discontinuous types. Coaxial nozzles have... 

    Numerical Simulation of One-Dimensional Compressible Flow with Real Gas Effects by Solving Boltzmann Equation Using High-Order Accurate Finitedifference Method

    , M.Sc. Thesis Sharif University of Technology Heydarzadeh, Amir Hossein (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In this study, the Shokov-BGK model of the Boltzmann equation is reformulated and generalized to consider the real gas effects. At first, the formulation is performed to consider an arbitrary specific heats ratio and the correct Prandtl number for polyatomic gases. Here, the resulting equations of the present formulation are numerically solved by applying the high-order finite-difference weighted essentially non-oscillatory (WENO) scheme. The present solution method is tested by computing the one-dimension Reiman problem with different specific heats ratios for a wide range of the Knudsen numbers. The results are compared with the available gas-kinetic results which show good agreement. It... 

    Experimental investigation of characteristic curve for gas-lift pump

    , Article Journal of Petroleum Science and Engineering ; Volume 62, Issue 1 , 2014 , Pages 156-170 ; ISSN: 09204105 Hanafizadeh, P ; Raffiee, A. H ; Saidi, M. H ; Sharif University of Technology
    Abstract
    Using gas-liquid lifting pumps is a quite different technology for pumping two or three phase flows rather than other types of pumping systems. Therefore, finding performance characteristic chart for this type of pumping system seems to be necessary. In this type of pumping system, the liquid phase is pushed upward by the compressed air which has been injected in the bottom of upriser pipe of the pump. Therefore, compressed air acts as the driving force in gas lifting pumps instead of moving parts in ordinary pumps. It can be concluded that the definition of characteristic curve used for ordinary pump is not very appropriate for this type of pumping system. In this study, it has been... 

    An Investigation on the Effects of Experimental Variables on Silver Nano Particles Produced by Electromagnetic Levitation Technique

    , Article Journal of Cluster Science ; Volume 24, Issue 3 , 2013 , Pages 635-642 ; 10407278 (ISSN) Halali, M ; Malekzadeh, M ; Sharif University of Technology
    2013
    Abstract
    In this study the effects of melt temperature and flow rate of cooling gas on the characteristics of silver nanoparticles have been studied. Transmission electron microscopy and dynamic light scattering techniques have been employed to monitor morphology and particle size of the product. Measurements reveal that higher melt temperatures and higher cooling gas flow rates can decrease particle size. Silver nanoparticles with an average particle size of 35 nm and specific surface of 18.489 m2/g have been obtained at a melt temperature of 1,130 °C with argon flow rate of 20 liters per minute  

    MOD growth of epitaxial cerium oxide buffer layer on LAO substrates for fabrication of c-axis oriented YBCO

    , Article Micro and Nano Letters ; Volume 7, Issue 10 , 2012 , Pages 1008-1010 ; 17500443 (ISSN) Hosseini, M ; Foroughi Abari, F ; Vesaghi, M. A ; Fardmanesh, M ; Sharif University of Technology
    2012
    Abstract
    Epitaxial cerium oxide (CeO2) buffer layer has been grown on lanthanum aluminate (LAO) single crystal substrates for fabrication of c-axis oriented YBa2Cu3O7-x (YBCO). Precursor solution of cerium acetylacetonates with viscosity of 0.6 centipoises was spin coated on the 1×1 cm area LAO substrates. The calcination was carried out by very slow ramp (1°C per minute) until the final temperature of 500°C in oxygen flow to remove most of the organic compounds. The final heat treatment has been done at 780°C by a ramp of 20° per minute in gas flow of mixed argon-oxygen with 5 Pa partial pressure of oxygen. The thickness of the deposited CeO2 buffer layer was 20 nm. Then, 100 nm thick YBCO film was... 

    Analytical Solution for Isothermal Flow in a Shock Tube Containing Rigid Granular Material

    , Article Transport in Porous Media ; Volume 93, Issue 1 , 2012 , Pages 13-27 ; 01693913 (ISSN) Hayati, A. N ; Ahmadi, M. M ; Mohammadi, S ; Sharif University of Technology
    2012
    Abstract
    Analytical solution of shock wave propagation in pure gas in a shock tube is usually addressed in gas dynamics. However, such a solution for granular media is complex due to the inclusion of parameters relating to particles configuration within the medium, which affect the balance equations. In this article, an analytical solution for isothermal shock wave propagation in an isotropic homogenous rigid granular material is presented, and a closed-form solution is obtained for the case of weak shock waves. Fluid mass and momentum equations are first written in wave and (mathematical) non-conservation forms. Afterwards by redefining the sound speed of the gas flowing inside the pores, an... 

    Mathematical modeling of a slurry reactor for DME direct synthesis from syngas

    , Article Journal of Natural Gas Chemistry ; Volume 21, Issue 2 , March , 2012 , Pages 148-157 ; 10039953 (ISSN) Papari, S ; Kazemeini, M ; Fattahi, M ; Sharif University of Technology
    2012
    Abstract
    In this paper, an axial dispersion mathematical model is developed to simulate a three-phase slurry bubble column reactor for direct synthesis of dimethyl ether (DME) from syngas. This large-scale reactor is modeled using mass and energy balances, catalyst sedimentation and single-bubble as well as two-bubbles class flow hydrodynamics. A comparison between the two hydrodynamic models through pilot plant experimental data from the literature shows that heterogeneous two-bubbles flow model is in better agreement with the experimental data than homogeneous single-bubble gas flow model. Also, by investigating the heterogeneous gas flow and axial dispersion model for small bubbles as well as the... 

    DSMC simulation of heat transfer in subsonic rarefied gas flows through micro/nanochannels imposing a constant inflow/wall temperature difference

    , Article 41st AIAA Fluid Dynamics Conference and Exhibit ; 2011 ; 9781600869471 (ISBN) Darbandi, M ; Karchani, A ; Akhlaghi, H ; Mosayebi, G ; Schneider, G. E ; Sharif University of Technology
    Abstract
    We use the direct simulation Monte Carlo (DSMC) method and investigate the subsonic rarefied gas flow through micro/nanochannels, imposing a constant pressure ratio and a constant temperature difference between the inflow and wall temperature. We further study the heat transfer characteristics of subsonic nitrogen gas flow under this imposed temperature difference. We show that, specifying a higher temperature magnitude would lead to more rarefactions even imposing a fixed temperature difference. This consequently results in a higher wall heat flux rate for a fixed inflow-wall temperature difference. Our investigating shows that the number of simulated particles need to increase suitably if... 

    Preparation and characterization of PES and PSU membrane humidifiers

    , Article Journal of Membrane Science ; Volume 383, Issue 1-2 , 2011 , Pages 197-205 ; 03767388 (ISSN) Samimi, A ; Mousavi, S. A ; Moallemzadeh, A ; Roostaazad, R ; Hesampour, M ; Pihlajamaki, A ; Manttari, M ; Sharif University of Technology
    Abstract
    Polysulfone (PSU) and polyethersulfone (PES) porous membranes; and mixed polymer with nanoparticles TiO2, were prepared for air humidification. The mechanical properties and morphology of these membranes were studied by Tensile tester and SEM/EDX. The effects of membrane composition and operating factors on humidifier performance were investigated. The results revealed that the membrane composition and its structure have significant effect on humidification. The porous membranes with finger type cavities had higher humidification performance but lower mechanical properties. Water flux of the membranes was about 0.16-0.2L/hm2 at 25°C. Furthermore, adding 0.1wt% TiO2 nanoparticles to casting... 

    The effect of substrate surface roughness on ZnO nanostructures growth

    , Article Applied Surface Science ; Volume 257, Issue 8 , February , 2011 , Pages 3291-3297 ; 01694332 (ISSN) Roozbehi, M ; Sangpour, P ; Khademi, A ; Moshfegh, A. Z ; Sharif University of Technology
    2011
    Abstract
    The ZnO nanowires have been synthesized using vapor-liquid-solid (VLS) process on Au catalyst thin film deposited on different substrates including Si(1 0 0), epi-Si(1 0 0), quartz and alumina. The influence of surface roughness of different substrates and two different environments (Ar + H2 and N2) on formation of ZnO nanostructures was investigated. According to AFM observations, the degree of surface roughness of the different substrates is an important factor to form Au islands for growing ZnO nanostructures (nanowires and nanobelts) with different diameters and lengths. Si substrate (without epi-taxy layer) was found that is the best substrate among Si (with epi-taxy layer), alumina and... 

    Numerical simulation of confined nano-impinging jet in microscale cooling application using DSMC method

    , Article ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010, 1 August 2010 through 5 August 2010, Montreal, QC ; Issue PARTS A AND B , 2010 , Pages 359-366 ; 9780791854501 (ISBN) Darbandi, M ; Akhlaghi, H ; Karchani, A ; Schneider, G. E ; Sharif University of Technology
    2010
    Abstract
    In this study, we simulate rarefied gas flow through a confined nano-impinging jet using direct simulation Monte Carlo (DSMC) method. The effects of geometrical parameters, pressure ratio, and wall conditions on the heat transfer from a hot surface are examined. Hot surface modeled via diffusive constant wall temperature. Various inlet/confining surface conditions such as specular, adiabatic, and constant temperature are implemented and the effects of them on the wall heat flux rates are studied. The results show that Knudsen number, velocity slip, and temperature jump are main reasons which specify magnitudes of wall heat flux rates. Among all geometrical parameters, H/W ratio has the... 

    Thermodynamic analysis of slip flow forced convection through a microannulus

    , Article Journal of Thermophysics and Heat Transfer ; Volume 24, Issue 4 , Oce-Dec , 2010 , Pages 785-795 ; 08878722 (ISSN) Sadeghi, A ; Asgarshamsi, A ; Saidi, M. H ; Sharif University of Technology
    2010
    Abstract
    The present investigation is devoted to the second law of thermodynamics analysis of steady-state hydrodynamically and thermally fully developed laminar gasflow in a microannulus with constant but different wall heat fluxes. Slip velocity and temperature jump boundary conditions are usedtodescribe rarefaction effects. Viscous heating is also included for both the wall cooling and heating cases. Using already available velocity profile, closedform expressions are obtained for the transverse distribution of temperature and entropy generation rates. The results demonstrate that the effectof the wall heatfluxes ratioonentropy generation is negligible atlarge valuesofthe group parameter and... 

    Viscous dissipation and rarefaction effects on laminar forced convection in microchannels

    , Article Journal of Heat Transfer ; Volume 132, Issue 7 , 2010 , Pages 1-12 ; 00221481 (ISSN) Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    2010
    Abstract
    Fluid flow in microchannels has some characteristics, which one of them is rarefaction effect related with gas flow. In the present work, hydrodynamically and thermally fully developed laminar forced convection heat transfer of a rarefied gas flow in two microgeometries is studied, namely, microannulus and parallel plate microchannel. The rarefaction effects are taken into consideration using first-order slip velocity and temperature jump boundary conditions. Viscous heating is also included for either the wall heating or the wall cooling case. Closed form expressions are obtained for dimensionless temperature distribution and Nusselt number. The results demonstrate that for both geometries,... 

    Numerical modeling of transient turbulent gas flow in a pipe following a rupture

    , Article Scientia Iranica ; Volume 17, Issue 2 B , 2010 , Pages 108-120 ; 10263098 (ISSN) Nouri Borujerdi, A ; Ziaei Rad, M ; Sharif University of Technology
    2010
    Abstract
    The transient flow of a compressible gas generated in a pipeline after an accidental rupture is studied numerically. The numerical simulation is performed by solving the conservation equations of an axisymmetric, transient, viscous, subsonic flow in a circular pipe including the breakpoint. The numerical technique is a combined finite element-finite volume method applied on the unstructured grid. A modified K - ε model with a two-layer equation for the near wall region and compressibility correction is used to predict the turbulent viscosity. The results show that, for example, after a time period of 0.16 seconds, the pressure at a distance of 61.5 m upstream of the breakpoint reduces about...