Loading...
Search for: hydrogen-storage
0.007 seconds
Total 51 records

    Effect of Selected Promotors on the Electrocatalytic Performance in Oxygen Evolution Reaction

    , M.Sc. Thesis Sharif University of Technology Yousefi, Zahra (Author) ; Ghotbi, Cyrus (Supervisor) ; Larimi, Afsaneh Sadat (Supervisor)
    Abstract
    During the last few decades, efforts have been made to replace fossil fuels with clean and non-absorbent energy sources. One of the promising strategies is energy production by hydrogen storage using water splitting. For this purpose, different methods of using light, heat and electricity are provided. Electrolysis of water with a simple environment such as very high purity of hydrogen produced, controllable, device, no need for high temperature and pressure in the reactor and huge potential for industrial applications has been very much considered. Water electrolysis consists of two reactions: reduction of water to hydrogen (HER) and oxidation of water to oxygen (OER). The second reaction... 

    Molecular Dynamics Simulation of Hydrogen Diffusion into Brine: Implications for Underground Hydrogen Storage

    , M.Sc. Thesis Sharif University of Technology Kalati, Saba (Author) ; Ayatollahi, Shahaboddin (Supervisor) ; Mahani, Hassan (Supervisor) ; Pourkhiabani, Nahid (Co-Supervisor) ; Esmaeilbeig, Mohammad Amin (Co-Supervisor)
    Abstract
    The high consumption of worldwide fossil energy and its detrimental effects on the environment and climate have prompted a transition toward renewable energy sources. The availability of renewable energy sources depends on weather and seasonal changes; therefore, an imbalance between supply and demand would be unavoidable. Hydrogen storage as an energy carrier, can fulfill this energy mismatch. Storing hydrogen in underground formations, such as aquifers, has been the subject of extensive research recently. In these storage reservoirs, hydrogen contacts the resident brine which will be lost through the dissolution-diffusion mechanism. Therefore, successful design of these storages requires... 

    The Experimental Study of Adsorption and Separation of Hydrogen Gas Using Metal-organic Frameworks

    , M.Sc. Thesis Sharif University of Technology Hashemi, Mohammad Mahdi (Author) ; Ghotbi, Cyrus (Supervisor) ; Karimi Sabet, Javad (Supervisor)
    Abstract
    Hydrogen gas is considered as a clean fuel and energy carrier that its storage for future uses is a challenging issue. One of the methods to store it, is adsorption on a group of adsorbents called metal-organic frameworks. In this research, one of these frameworks called ZIF-8, has been selected to study hydrogen storage capability. To evaluate the effect of having two metals, a mixture of two metals was used in the synthesis process. To characterize the structure of the synthesized adsorbents, X-ray powder diffraction (XRD),adsorption and desorption of nitrogen at temperature of 77 K, Field Emission Scanning Electron Microscopy (FESEM), energy-dispersive X-ray Spectroscopy (EDS) and... 

    Modeling and Survey of the Hydrogen Storage System Using Metal Hydride Technology in Hybrid Vehicles

    , M.Sc. Thesis Sharif University of Technology Mahdavi, Omid (Author) ; Roshandel, Ramin (Supervisor) ; Moshfegh, Alireza (Supervisor)
    Abstract
    Relying on current fuels and technologies in vehicle industry in recent years has led to an enormous challenge such as air pollution, climate change and energy security. In the other hand, fossil fuel reservoirs are being depleted with an intensive rate. Nowadays, hydrogen, as a substitute for current fuels and hybrid, fuel cell and electric vehicles, as substitutes for current vehicular technologies are under research and development. Because of abundant advantages such as high efficiency and long cycle life, no depreciation for parts and scalability, fuel cell vehicles is of interest for many car manufacturers throughout the world and lots of them have demonstrated their prototype fuel... 

    Preparation of Hydrogen Adsorbent Nanoporous Polymer for Fuel Cell Applications

    , M.Sc. Thesis Sharif University of Technology Matloob Moghaddam, Mojtaba (Author) ; Frounchi, Masoud (Supervisor) ; Mousavi, Abbas (Supervisor)
    Abstract
    Application of fuel cells as one of the new and clean energy generators at recent years is many interesting for governments. In many cases hydrogen gas is fuel of these cells. One of the problems at this field is issue of hydrogen storage with a safety and ecconemical way. Usually storage of hydrogen be done with several different ways : Composite tank, Liquid hydrogen, Metal hydride , Chemical hydride, carbon nanotube and etc. Use of polymers that have ability of adsorption is one of topics that is attended at these years , because of their low density and easy process ability and low explosion risk and economical aspect . So at this research we try to identify polymers that have... 

    Investigation Hydrogen Properties of Nano Composite MgH2-Ti Cr1.2Fe0.6 Nano Crystalline Synthesized by Mechanical Alloying and Vacuum Arc Re-Melting(VAR)

    , M.Sc. Thesis Sharif University of Technology Mahmoudi, Nafiseh (Author) ; Simchi, Abdol Reza (Supervisor)
    Abstract
    In this research, nano composite MgH2-TiCr1.2 Fe0.6 nano crystalline was synthesized by mechanical alloying and Vacuum arc re-melting (VAR). the effect of Milling conditions and adding nano crystalline TiCr1.2 Fe0.6 as a catalyst on the structure and hydrogen desorption properties of MgH2 were studied. MgH2 powder grain size after 4 hours milling gained to 15nm and strain network reached to 0.8%. Determined that the increasing of accumulated lattice strain because of mechanical milling combined with adding nano crystalline alloy TiCr1.2 Fe0.6 significantly improve the properties of MgH2 hydrogen desorption. After an hour mill working, high pressure phase of γ-MgH2 was appeared in... 

    Model Development for the Evaluation of Hydrogen Storage Capacity in Hybrid Nanostructures

    , Ph.D. Dissertation Sharif University of Technology Lotfi, Roghaye (Author) ; Saboohi, Yadollah (Supervisor) ; Ghofrani, Mohammad Bagher (Supervisor)
    Abstract
    In the present work storage of hydrogen molecules in hybrid nanostructures has been evaluated. Hybrid nanostructures consist of carbon structure bases which have been doped by metal atoms. Carbon structures used in this thesis include graphene and metal organic frameworks (MOFs). Carbon structures have superior properties such as very low density, while metal atoms are considered to enhance the interactions and increase the hydrogen storage capacity. In the first step of the work, Monte Carlo method was applied to model the system. To develop the Monte Carlo method for hydrogen adsorption on graphene sheets, Feynman-Hibbs corrections were added to Lennard-Jones potential. However in the next... 

    Assessment of 3-Dimensional Structure of Graphene Nanostructures for Increasing Hydrogen Storage Capacity

    , M.Sc. Thesis Sharif University of Technology Ghanbari, Mohammad (Author) ; Saboohi, Yadollah (Supervisor)
    Abstract
    In this dissertation, Hydrogen storage in the solids based was investigated. The carbon-based structure used is the graphene that decorated with metal atoms to increase intermolecular interactions and increase the adsorption weight capacity. The structure of graphene has been considered due to its properties such as low density, high heat transfer coefficient and high specific surface area. Initially, the structure of pure graphene was investigated using the molecular dynamics method for hydrogen storage and it was shown that the interaction between hydrogen molecules and pure graphene is very weak and it can’t be a good option for use in cars. Then, the structures of graphene reinforced... 

    An Analytical Solution for the Polymeric Liner Collapse in Hyperbaric type IV Hydrogen Storage Vessels

    , M.Sc. Thesis Sharif University of Technology Alizadeh, Mostafa (Author) ; Naghdabadi, Reza (Supervisor)
    Abstract
    Type IV high pressure vessels are composite vessels with a polymeric liner, which are the best choice for storing hydrogen in hydrogen vehicles. The defect of these vessels is the penetration of light hydrogen molecules in the polymeric liner and the composite part. When depressurization the vessel, these molecules cannot release from the polymeric liner and the composite part according to the emptying rate of the vessel. Thus, concentration of the hydrogen molecules in the polymeric liner becomes more than inside the vessel which leads to a pressure difference between the two sides of the polymeric liner that causes the liner collapse. In this research, the partial differential equation for... 

    A Feasibility Study in Fuel Cell Hydrogen Storage Capacity Increase Using Carbon Nanotubes Technology and Molecular Dynamics Simulation

    , M.Sc. Thesis Sharif University of Technology Sabouri, Moslem (Author) ; Darbandi, Masoud (Supervisor)
    Abstract
    Hydrogen fuel cell is one important choice to supply energy for vehicles in near future. The lack of a safe but inexpensive technology to store hydrogen in a vehicle tank is a serious challenge to commercialize the application of fuel cells. Past experiments have shown that carbon nanostructures, especially single walled carbon nanotubes, have considerable capacity to boost up hydrogen storage. Therefore, many studies have been performed to investigate the possibility of higher hydrogen storage capability using nanostructures for the past decade. Molecular dynamics method which is considered as one of the most important tools in studying nanostructures has shown vast applications in these... 

    Investigation on Parameters of Carbon Nanotubes Growth and Effect of Interaction between H2 Gas and their Surfaces and Determining Capacity of Hydrogen Storage

    , Ph.D. Dissertation Sharif University of Technology Reyhani, Ali (Author) ; Moshfegh, Alireza (Supervisor) ; Nozad, Ahmad (Supervisor)
    Abstract
    In this study, growth of MWCNTs in form of thin film and powder for hydrogen storage was investigated. Different analytical techniques including SEM, TEM, STA, XRD, XPS, BET, BJH and Raman spectroscopy were applied to characterize the samples. The results showed that substrate, catalyst thickness and type of catalyst are influenced in yield of the growth, structure and quality of MWCNTs. The study has also indicated that MWCNTs grown on Fe-Pd bimetallic catalyst with 25-75 proportion had the highest growth yield. Moreover, decreasing of the growth temperature from 970 to 920 oC produced single-walled carbon nanotubes (SWCNTs) with high quality (IG/ID = 15.8) and low growth yield.... 

    Effect of Titanium Compounds on H-kinetics of Nanostructured Magnesium Hydride

    , M.Sc. Thesis Sharif University of Technology Daryani, Mohammad (Author) ; Simchi, Abdolreza (Supervisor) ; Maddah Hosseini, Hamid Reza (Supervisor)
    Abstract
    Magnesium hydride (MgH2) is an attractive candidate for solid-state hydrogen storage applications. Scanning Electron Microscopy observations showed that during cyclic absorption and desorption considerable micro-crack was formed at the reaction interface and reduced the nucleation time. To improve the kinetic properties of MgH2 during dehydrogenation a nanostructured MgH2-10%mol TiH2-6%mol TiO2 material system was prepared by high-energy ball milling. Isothermal analysis with commercial volumetric sievert demonstrated that the addition of titanium compounds significantly improved the kinetics of dehydrogenation compared to commercial MgH2  

    Microfluidic Investigation of Hydrogen-Water Flow at Pore-Scale for Subsurface Hydrogen Storage

    , M.Sc. Thesis Sharif University of Technology Bahrami, Mehdi (Author) ; Mahani, Hassan (Supervisor) ; Ayatollahi, Shahaboddin (Supervisor) ; Zivar, Davood (Co-Supervisor)
    Abstract
    Hydrogen storage in porous subsurface formations, such as aquifers or depleted hydrocarbon reservoirs because of their high storage capacity, has gained momentum as a promising approach to balance the renewable energy supply and demand. However, the poor understanding of hydrogen flow dynamics in porous media is the main obstacle to the development and widespread application of underground hydrogen storage (UHS). For example, the main uncertainty is lack of detailed understanding of hydrogen flow dynamics in the natural porous media which leads to the unknown volume of recoverable hydrogen for this cyclic process. In this research, by developing a visual microfluidic apparatus to handle... 

    Direct Numerical Simulation of Hydrogen-Water Flow at Pore-Scale During Underground Hydrogen Storage using Computational Fluid Dynamic Methods

    , M.Sc. Thesis Sharif University of Technology Bagheri Tadi, Mohammad Matin (Author) ; Mahani, Hassan (Supervisor) ; Ayatollahi, Shahabedin (Supervisor) ; Zivar, Davoud (Co-Supervisor)
    Abstract
    Mass or large-scale storage of hydrogen, as a clean source of energy, should be conducted in underground formations in order to be used as a reliable energy source at the peak of consumption. In this regard, underground formations such as aquifers and depleted hydrocarbon reservoirs are the most favorable and secured media for hydrogen storage. However, detailed understanding of the flow dynamics of hydrogen-water in these media is critical to maximize hydrogen storage and recovery and tackle the existing uncertainities which exist in the flow functions. To fill this gap, this research aims at a detailed pore-scale investigation of the effect of flow regime, hydrogen compressibility, and... 

    Cyclic Simulation of Field-Scale Underground Hydrogen Storage

    , M.Sc. Thesis Sharif University of Technology Izadi Amiri, Esmail (Author) ; Mahani, Hassan (Supervisor) ; Zivar, Davood (Co-Supervisor)
    Abstract
    Due to environmental concerns about fossil fuels energy sources, countries are striving to replace fossil fuels with renewable energy sources. However, most alternative energy sources are highly dependent on weather and seasonal conditions. Underground hydrogen storage (UHS), unlike carbon dioxide storage which only experiences the gas injection phase, involves injection and production cycles. Therefore, it faces different challenges, each of which has different effects on the final hydrogen recovery rate and, consequently, cost estimation. Some of the major challenges ahead include the reservoir structure, heterogeneity of reservoirs, selection of suitable cushion gas, the impact of the... 

    Production of Magnesium Nanoparticles by Electromagnetinc Levitation Melting

    , M.Sc. Thesis Sharif University of Technology Ahmadi, Mahdi (Author) ; Halali, Mohammad (Supervisor)
    Abstract
    Electromagnetic levitation(EML) provides a process producing nanoparticles using gas condensation method. In gas condensation processes, vapor is produced by heating the sample then inert gas is applied to provide the inert atmosphere and also cool and condense the sample vapor into a nano powder to obtain a sample nanoparticle. In the EML method, rapidly alternating electromagnetic field induces eddy current in the conducting sample which will heat the sample. The current in the sample result in an induced magnetic field. Consequently, the sample droplet is heated and levitated simultaneously by an induction furnace as a generator. The sample temperature is dependent on parameters such as... 

    Techno-economic comparative study on hydrogen and electricity cogeneration systems with CO2 capture

    , Article ASME 2016 10th International Conference on Energy Sustainability, ES 2016, collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology, 26 June 2016 through 30 June 2016 ; Volume 1 , 2016 ; 9780791850220 (ISBN) Zohrabian, A ; Soltanieh, M ; Mansouri Majoumerd, M ; Arild, Ø ; Sharif University of Technology
    American Society of Mechanical Engineers  2016
    Abstract
    In order to achieve the international climate goals and to keep the global temperature increase below 2 °C, carbon capture and storage in large point sources of CO2 emissions has received considerable attention. In recent years, mitigation of CO2 emissions from the power sector has been studied extensively whereas other industrial point source emitters such as hydrogen industry have also great potential for CO2 abatement. This study aims to draw an updated comparison between different hydrogen and power cogeneration systems using natural gas and coal as feedstock. The goal is to show the relative advantage of cogeneration systems with respect to CO2 emission reduction costs. Accordingly, the... 

    Structural characteristics and desorption properties of nanostructured MgH2 synthesised by high energy mechanical milling [electronic resource]

    , Article Journal of Powder Metallurgy ; September 2011, Volume 54, Issue 4 , P.480-483 Simchi, H ; Kaflou, A ; Simchi, A. (Abdolreza) ; Sharif University of Technology
    Abstract
    The effect of particle size, lattice strain and crystallite size on the hydrogen desorption properties of nanocrystalline magnesium hydride powder was investigated. Commercial MgH2 powder was milled in a Spex 8000M up to 16 h and its structural evolution and desorption characteristics at different time intervals were examined using various analytical techniques. At the early stage of milling, the formation of metastable γ-MgH2 phase was noticed. While the crystallite size gradually decreased to 12 nm with increasing the milling time, the accumulated lattice strain gained a maximum value of 0·9% after 4 h milling. The highest drop in the desorption temperature (∼100°C) was attained at the... 

    Structural characteristics and desorption properties of nanostructured MgH2 synthesised by high energy mechanical milling

    , Article Powder Metallurgy ; Volume 54, Issue 4 , 2011 , Pages 480-483 ; 00325899 (ISSN) Simchi, H ; Kaflou, A ; Simchi, A ; Sharif University of Technology
    2011
    Abstract
    The effect of particle size, lattice strain and crystallite size on the hydrogen desorption properties of nanocrystalline magnesium hydride powder was investigated. Commercial MgH2 powder was milled in a Spex 8000M up to 16 h and its structural evolution and desorption characteristics at different time intervals were examined using various analytical techniques. At the early stage of milling, the formation of metastable γ-MgH2 phase was noticed. While the crystallite size gradually decreased to 12 nm with increasing the milling time, the accumulated lattice strain gained a maximum value of 0·9% after 4 h milling. The highest drop in the desorption temperature (∼100°C) was attained at the... 

    Metal hydrides show potential under stress

    , Article Metal Powder Report ; Volume 64, Issue 7 , 2009 , Pages 24-26,28 ; 00260657 (ISSN) Simchi, H ; Kaflou, A ; Simchi, A ; Sharif University of Technology
    2009
    Abstract
    Work carried out in Iran seems to indicate that nanostructured materials may hold a key to fuel storage in a future hydrogen economy.... © 2009 Elsevier Ltd. All rights reserved