Loading...
Search for: ion-channels
0.011 seconds

    Temperature dependence and the effect of charge configuration on water permeation through modified carbon nanotubes: A simulation study

    , Article Fluid Phase Equilibria ; Volume 363 , 15 February , 2014 , Pages 282-289 ; ISSN: 03783812 Alizadeh, A ; Parsafar, G ; Sharif University of Technology
    Abstract
    We have investigated the water permeation through carbon nanotube (CNT) membranes as a model of peptide nanotube channels (PNCs). The effect of different charge configured CNTs which tailored based on some artificial ion channels on the water permeation through the channels have been studied. In addition, the temperature dependence of the permeation has been investigated. We have found that there is a jump in the permeation which is somehow related to the characteristics of each channel and the temperature of this permeation jump changes according to the channel configuration. Our investigation on the channels shows that the temperature at which the permeation jump occurs is related to the... 

    Gating and conduction of nano-channel forming proteins: A computational approach

    , Article Journal of Biomolecular Structure and Dynamics ; Volume 31, Issue 8 , 2013 , Pages 818-828 ; 07391102 (ISSN) Besya, A. B ; Mobasheri, H ; Ejtehadi, M. R ; Sharif University of Technology
    2013
    Abstract
    Monitoring conformational changes in ion channels is essential to understand their gating mechanism. Here, we explore the structural dynamics of four outer membrane proteins with different structures and functions in the slowest nonzero modes of vibration. Normal mode analysis was performed on the modified elastic network model of channel in the membrane. According to our results, when membrane proteins were analyzed in the dominant mode, the composed pores, TolC and α-hemolysin showed large motions at the intramembrane β-barrel region while, in other porins, OmpA and OmpF, largest motions observed in the region of external flexible loops. A criterion based on equipartition theorem was used... 

    Investigation of the Performance and Mechanism of Permeation through Biological Membranes

    , Ph.D. Dissertation Sharif University of Technology Alizadeh, Ali (Author) ; Parsafar, Gholamabbas (Supervisor)
    Abstract
    Ion channels are present in all cell membranes which are the important part of the performances in regulating the flow across the membrane as well as the signaling. We have investigated the water permeation through carbon nanotube (CNT) membranes as a model for the synthetic ion channels, i.e. peptide nanotube channels (PNCs). The effect of different charge configured CNTs which tailored based on these ion channels on the water permeation has been studied. In addition, the temperature dependence of the permeation using statistical models such as continuous time random walk model (CTRW) via molecular dynamics simulation has been investigated. We have found that there is a jump in the... 

    OmpF, a nucleotide-sensing nanoprobe, computational evaluation of single channel activities

    , Article Physica A: Statistical Mechanics and its Applications ; Volume 457 , 2016 , Pages 215-224 ; 03784371 (ISSN) Haji Abdolvahab, R ; Mobasheri, H ; Nikouee, A ; Ejtehadi, M. R ; Sharif University of Technology
    Elsevier B.V  2016
    Abstract
    The results of highthroughput practical single channel experiments should be formulated and validated by signal analysis approaches to increase the recognition precision of translocating molecules. For this purpose, the activities of the single nano-pore forming protein, OmpF, in the presence of nucleotides were recorded in real time by the voltage clamp technique and used as a means for nucleotide recognition. The results were analyzed based on the permutation entropy of current Time Series (TS), fractality, autocorrelation, structure function, spectral density, and peak fraction to recognize each nucleotide, based on its signature effect on the conductance, gating frequency and voltage... 

    Ion Channel Based Bio-Synthetic Modulator for Diffusive Molecular Communication

    , Article IEEE Transactions on Nanobioscience ; Volume 15, Issue 5 , 2016 , Pages 418-432 ; 15361241 (ISSN) Arjmandi, H ; Ahmadzadeh, A ; Schober, R ; Nasiri Kenari, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    In diffusion-based molecular communication (DMC), a transmitter nanomachine is responsible for signal modulation. Thereby, the transmitter has to be able to control the release of the signaling molecules employed for representing the transmitted information. In nature, an important class of control mechanisms for releasing molecules from cells utilizes ion channels which are pore-forming proteins across the cell membrane. The opening and closing of the ion channels is controlled by a gating parameter. In this paper, an ion channel based modulator for DMC is proposed which controls the rate of molecule release from the transmitter by modulating a gating parameter signal. Exploiting the... 

    The role of mscl amphipathic n terminus indicates a blueprint for bilayer-mediated gating of mechanosensitive channels

    , Article Nature Communications ; Volume 7 , 2016 ; 20411723 (ISSN) Bavi, N ; Cortes, D. M ; Cox, C. D ; Rohde, P. R ; Liu, W ; Deitmer, J. W ; Bavi, O ; Strop, P ; Hill, A. P ; Rees, D ; Corry, B ; Perozo, E ; Martinac, B ; Sharif University of Technology
    Nature Publishing Group  2016
    Abstract
    The bacterial mechanosensitive channel MscL gates in response to membrane tension as a result of mechanical force transmitted directly to the channel from the lipid bilayer. MscL represents an excellent model system to study the basic biophysical principles of mechanosensory transduction. However, understanding of the essential structural components that transduce bilayer tension into channel gating remains incomplete. Here using multiple experimental and computational approaches, we demonstrate that the amphipathic N-terminal helix of MscL acts as a crucial structural element during tension-induced gating, both stabilizing the closed state and coupling the channel to the membrane. We... 

    Nanomechanical properties of MscL α helices: A steered molecular dynamics study

    , Article Channels ; Volume 11, Issue 3 , 2017 , Pages 209-223 ; 19336950 (ISSN) Bavi, N ; Bavi, O ; Vossoughi, M ; Naghdabadi, R ; Hill, A. P ; Martinac, B ; Jamali, Y ; Sharif University of Technology
    Taylor and Francis Inc  2017
    Abstract
    Gating of mechanosensitive (MS) channels is driven by a hierarchical cascade of movements and deformations of transmembrane helices in response to bilayer tension. Determining the intrinsic mechanical properties of the individual transmembrane helices is therefore central to understanding the intricacies of the gating mechanism of MS channels. We used a constant-force steered molecular dynamics (SMD) approach to perform unidirectional pulling tests on all the helices of MscL in M. tuberculosis and E. coli homologs. Using this method, we could overcome the issues encountered with the commonly used constant-velocity SMD simulations, such as low mechanical stability of the helix during... 

    Efficient Schemes for Information Transfer in Molecular Bio-Nano Communication Networks

    , Ph.D. Dissertation Sharif University of Technology Arjmandi, Hamid Reza (Author) ; Nasiri-Kenari, Masoumeh (Supervisor) ; Gohari, Amin (Supervisor)
    Abstract
    Recently, the nano-bio communication networks have received significant attention. Among different communication mechanisms proposed for nano communication, diffusion based molecular communication (DMC) is the most promising scheme. This thesis focuses on DMC and first proposes a theoretical model for this scheme. In the next part of the thesis, inspired by the molecule transport mechanisms in the biological cells, two biosynthetic modulator structures are proposed.In first structure, an ion channel based modulator for DMC is proposed which controls the rate of molecule release from the transmitter by modulating a gating parameter signal. The corresponding average modulated signal, i.e., the... 

    Analysis of Various Approaches for Expounding Dissipative Effects in
    Open Quantum Systems

    , Ph.D. Dissertation Sharif University of Technology Naeij, Hamid Reza (Author) ; Shafiee, Afshin (Supervisor)
    Abstract
    Quantum Theory leads to results that are consistent with the very high accuracy with experience and also includes a wide range of empirical phenomena. Hence, quantum mechanics is accepted as the best and most acclaimed physical theory. However, there is still no consensus between physicists on the interpretation of parts of this theory. One of the unresolved issues in quantum mechanics is the measurement problem. The basis of the measurement problem is a kind of transition from the quantum world to the classical world. The fundamental question that arises here is, where is the boundary between quantum mechanics and classical mechanics? and how can be described the transition from quantum... 

    Investigation of Activation Mechanism of Mechanosensitive Nano Ion Channels

    , Ph.D. Dissertation Sharif University of Technology Bavi, Omid (Author) ; Vosoughi, Manochehr (Supervisor) ; Jamali, Yusef (Supervisor) ; Naghdabadi, Reza (Supervisor)
    Abstract
    Mechanosensitive (MS) channels are ubiquitous molecular force sensors that respond to a number of different mechanical stimuli including tensile, compressive and shear stress. One of the main mechanisms to functionally study these channels is the patch clamp technique. Here we use continuum mechanics to probe the question of how curvature, in a standard patch clamp experiment, at different length scales (global and local) affects a model MS channel. Firstly, to increase the accuracy of the Laplace’s equation in tension estimation in a patch membrane and to be able to more precisely describe the transient phenomena happening during patch clamping, we propose a modified Laplace’s equation. In... 

    Tuning of ionic transport through graphene oxide fibers by sheets size

    , Article Iranian Journal of Physics Research ; Volume 21, Issue 1 , 2021 , Pages 41-49 ; 16826957 (ISSN) Ghanbari, H ; Esfandiar, A ; Khansanami, M ; Sharif University of Technology
    Isfahan University of Technology  2021
    Abstract
    In this study, graphene oxide fibers are introduced as new graphene oxide (GO) membranes with the capability of ion selectivity. Graphene oxide fibers, like other macro structured membranes, are always associated with cavities and defects. To solve this problem, a 50% combination of graphene oxide suspension including small sheets with an average size of ~ 0.5 µm2 and large sheets with an area of more than 10 µm2 was used. According to the morphological results of scanning electron microscopy, as well as the amount of ionic transport through the fiber, reduction of cavities and its defects were confirmed. Moreover, it was found that ionic current through fibers consist of large and small GO... 

    Inserting the effects of ion channels in mean field models: Application to generation of anesthetic slow waves

    , Article EUROCON 2005 - The International Conference on Computer as a Tool, Belgrade, 21 November 2005 through 24 November 2005 ; Volume I , 2005 , Pages 378-381 ; 142440049X (ISBN); 9781424400492 (ISBN) Molaee Ardekani, B ; Senhadji, L ; Shamsollahi, M. B ; Sharif University of Technology
    2005
    Abstract
    In this paper, effects of general anesthesia on the electroencephalogram (EEC) has been modeled with an enhanced physiological mean field theory of electrocortical activity. Enhancement is done by inserting two intrinsic ion channels (IKNa and IAR) in Liley's mean field model. In addition to excitatory and inhibitory synapses, intrinsic ion channels can generate or manipulate the brain rhythms. IKNa and IAR can produce slow brain rhythms (delta band frequency) in deep levels of anesthesia. We represent the activities of each mentioned ion channels by cascading a nonlinear function and a first order low pass filter. Linearized and numerical solutions of the modified model show that the power...