Loading...
Search for: lithium
0.017 seconds
Total 202 records

    State of charge estimation for lithium-ion batteries based on square root sigma point Kalman filter considering temperature variations

    , Article IET Electrical Systems in Transportation ; Volume 12, Issue 3 , 2022 , Pages 165-180 ; 20429738 (ISSN) Mahboubi, D ; Jafari Gavzan, I ; Saidi, M. H ; Ahmadi, N ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    The battery management system (BMS) in electric vehicles monitors the state of charge (SOC) and state of health (SOH) of lithium-ion battery by controlling transient parameters such as voltage, current, and temperature prevents the battery from operating outside the optimal operating range. The main feature of the battery management system is the correct estimation of the SOC in the broad range of vehicle navigation. In this paper, to estimate real-time of SOC in lithium-ion batteries and overcome faults of Extended Kalman Filter (EKF), the Square-Root Sigma Point Kalman Filter is applied on the basis of numerical approximations rather than analytical methods of EKF. For this purpose, the... 

    Plasma-enhanced chemical vapor deposition for fabrication of yolk-shell SnO2@Void@C nanowires, as an efficient carbon coating technique for improving lithium-ion battery performance

    , Article Materials Science in Semiconductor Processing ; Volume 149 , 2022 ; 13698001 (ISSN) Habibi, A ; Mousavi, M. R ; Yasoubi, M ; Sanaee, Z ; Ghasemi, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This manuscript describes the implementation of plasma-enhanced chemical vapor deposition (DC-PECVD) and vapor-liquid-solid (VLS) techniques to fabricate a yolk-shell SnO2@Void@C nanowire (NW) structure. SnO2 nanowires have been synthesized on the stainless steel mesh substrate through the VLS method. The PECVD-assisted growth of carbon nanolayer on the SnO2 and SiO2 coated SnO2 NWs has been performed to fabricate SnO2@C core-shell and SnO2@SiO2@C yolk-shell structures, respectively. A consequent silica etching process converted the SnO2@SiO2@C into SnO2@Void@C structure. The electrochemical performance of bare SnO2 NWs, SnO2 NWs @ C, and SnO2 @Void @ C coaxial NWs structures have been... 

    Mechanism understanding of Li-ion separation using a perovskite-based membrane

    , Article Membranes ; Volume 12, Issue 11 , 2022 ; 20770375 (ISSN) Golmohammadi, M ; Habibi, M ; Rezvantalab, S ; Mehdizadeh Chellehbari, Y ; Maleki, R ; Razmjou, A ; Sharif University of Technology
    MDPI  2022
    Abstract
    Lithium ions play a crucial role in the energy storage industry. Finding suitable lithium-ion-conductive membranes is one of the important issues of energy storage studies. Hence, a perovskite-based membrane, Lithium Lanthanum Titanate (LLTO), was innovatively implemented in the presence and absence of solvents to precisely understand the mechanism of lithium ion separation. The ion-selective membrane’s mechanism and the perovskite-based membrane’s efficiency were investigated using Molecular Dynamic (MD) simulation. The results specified that the change in the ambient condition, pH, and temperature led to a shift in LLTO pore sizes. Based on the results, pH plays an undeniable role in... 

    Developing an electro-thermal model to determine heat generation and thermal properties in a lithium-ion battery

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 147, Issue 21 , 2022 , Pages 12253-12267 ; 13886150 (ISSN) Mahboubi, D ; Jafari Gavzan, I ; Saidi, M. H ; Ahmadi, N ; Sharif University of Technology
    Springer Science and Business Media B.V  2022
    Abstract
    Lithium-ion batteries should continuously be operated at the optimum temperature range (15∼40∘C) for the best performance. Surface temperature monitoring is critical for the safe and efficient operation of the battery. In this study, initially, the electrical parameters of the battery are determined by applying a second-order equivalent circuit model. This model then is integrated with a thermal model based on the temperature dependent behavior of the electrical parameters and the heat generated. The input parameters to the electro-thermal model include the current, the ambient fluid temperature and the output parameters include the terminal voltage, state of charge, cell core temperature... 

    Oral administration of lithium chloride ameliorate spinal cord injury-induced hyperalgesia in male rats

    , Article PharmaNutrition ; Volume 21 , 2022 ; 22134344 (ISSN) Rahimi, G ; Mirsadeghi, S ; Rahmani, S ; Izadi, A ; Ghodsi, Z ; Ghodsi, S. M ; Rahimi Movaghar, V ; Kiani, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Background: Numerous studies have described the neuroprotective effect of lithium in spinal cord injury in addition to its ameliorative impact on pain sensation. In the present study, we aim to examine the efficacy of 85 mg/kg as well as 50 mg/kg dosage of the lithium chloride (LiCl) through oral consumption in spinal cord injured rats and their effect on gene expression of three candidate genes, corresponding to the hyper-sensitization. Methods: Adult Wistar (male) rats were divided into four experimental groups: control; oral administration of LiCl with 85 mg/kg and 50 mg/kg dosage; and 10 % sucrose receiver as the vehicle. BBB and heat plantar tests were performed weekly throughout four... 

    Insights into the efficient roles of solid electrolyte interphase derived from vinylene carbonate additive in rechargeable batteries

    , Article Journal of Electroanalytical Chemistry ; Volume 909 , 2022 ; 15726657 (ISSN) Mosallanejad, B ; Sadeghi Malek, S ; Ershadi, M ; Sharifi, H ; Ahmadi Daryakenari, A ; Boorboor Ajdari, F ; Ramakrishna, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Formation of unstable solid electrolyte interphase (SEI) layers lacking of thermal stability in non-aqueous electrolytes of rechargeable batteries is the main bottleneck for their long-life cycling, especially at elevated temperatures. Inclusion of a small dose of functional electrolyte additives into the batteries' electrolyte can be highly beneficial to surmount this issue. Of these additives, vinylene carbonate (VC) has drawn particular attention thanks to its high ability to build protective layers at anodes showing good integrity and outstanding thermal stability. In addition to its primary roles in present-day lithium-ion batteries (LIBs), VC additive has also been examined in other... 

    Graphene oxide interlayered in binder-free sulfur vapor deposited cathode for lithium-sulfur battery

    , Article Journal of Physics D: Applied Physics ; Volume 55, Issue 16 , 2022 ; 00223727 (ISSN) Hakimi, M ; Sanaee, Z ; Ghasemi, S ; Mohajerzadeh, S ; Sharif University of Technology
    IOP Publishing Ltd  2022
    Abstract
    The main drawback of lithium-sulfur (Li-S) batteries which leads to a short lifetime, is the shuttle effect during the battery operation. One of the solutions to mitigate the shuttle effect is the utilization of interlayers. Herein, graphene oxide (GO) paper as an interlayer has been implemented between the sulfur cathode fabricated by the vapor deposition process as a binder-free electrode and a separator in a Li-S battery in order to gain a sufficient capacity. The morphological characteristics and electrochemical performance of the fabricated electrode have been investigated. The fabricated battery demonstrates an initial discharge capacity of 1265.46 mAh g-1 at the current density of 100... 

    A robust kalman filter-based approach for SoC estimation of lithium-ION batteries in smart homes

    , Article Energies ; Volume 15, Issue 10 , 2022 ; 19961073 (ISSN) Rezaei, O ; Habibifar, R ; Wang, Z ; Sharif University of Technology
    MDPI  2022
    Abstract
    Battery energy systems are playing significant roles in smart homes, e.g., absorbing the uncertainty of solar energy from root-top photovoltaic, supplying energy during a power outage, and responding to dynamic electricity prices. For the safe and economic operation of batteries, an optimal battery-management system (BMS) is required. One of the most important features of a BMS is state-of-charge (SoC) estimation. This article presents a robust central-difference Kalman filter (CDKF) method for the SoC estimation of on-site lithium-ion batteries in smart homes. The state-space equations of the battery are derived based on the equivalent circuit model. The battery model includes two RC... 

    On the functionality of the polypyrrole nanostructures for surface modification of Co-free Li-rich layered oxide cathode applied in lithium-ion batteries

    , Article Journal of Electroanalytical Chemistry ; Volume 914 , 2022 ; 15726657 (ISSN) Vahdatkhah, P ; Khatiboleslam Sadrnezhaad, S ; Voznyy, O ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Co-free Li-rich manganese nickel oxide (LMNO) materials are emerging as an up-and-coming candidate for high-energy–density cathodes. However, they suffer from severe cycling capacity fading and poor performance rates. Herein, the surface functionalization of an LMNO cathode is designed by polypyrrole (PPy) nanostructure coating. We found that PPy nanoparticles@LMNO cathode exhibits high-capacity retention and enhanced rate capabilities, delivering a discharge capacity as high as 191 mAh g−1, with capacity retention of 96%, after ∼ 200 cycles at a current density of 20 mA g−1. The results indicate that the intercalation and doping pseudocapacitance can be varied depending on the synthesis... 

    Hybrid fibrous (PVDF-BaTiO3)/ PA-11 piezoelectric patch as an energy harvester for pacemakers

    , Article Journal of Industrial Textiles ; Volume 51, Issue 3_suppl , 2022 , Pages 4698S-4719S ; 15280837 (ISSN) Kabir, H ; Kamali Dehghan, H ; Mashayekhan, S ; Bagherzadeh, R ; Sorayani Bafqi, M. S ; Sharif University of Technology
    SAGE Publications Ltd  2022
    Abstract
    Lithium batteries have been widely used to power up implantable medical devices such as pacemakers that are often designed to treat, diagnose, and prevent different diseases. However, due to their limited capacity and lifetime, patients have to undergo a surgical procedure to replace the discharged battery. Recently, nanogenerators have been emerged and are broadly accepted since they can convert tiny biomechanical forces, such as heartbeats, into electrical energy. This study aims to manufacture a biocompatible and high-performance piezoelectric energy harvester (PEH) that is capable to be charged by the energy received from the heartbeat and store the generated voltage. In this research, a... 

    Implementation of binder-free SnO2 NWs@C electrode and LiTFSI-based electrolyte for high-performance lithium-ion battery

    , Article Journal of Physics D: Applied Physics ; Volume 56, Issue 1 , 2022 ; 00223727 (ISSN) Hakimi, M ; Habibi, A ; Sanaee, Z ; Ghasemi, S ; Mohajerzadeh, S ; Sharif University of Technology
    Institute of Physics  2022
    Abstract
    This study has investigated the effect of carbon coating on the electrochemical performance of SnO2 Nanowires (NWs) as an electrode along with a bis (trifluoromethane) sulfonimide lithium (LiTFSI)-based electrolyte in a lithium-ion battery (LIB). The vapor-liquid-solid approach has been used to grow SnO2 NWs on the stainless steel mesh current collector. The obtained results have demonstrated that the utilization of the LiTFSI-based electrolyte improved the battery performance with the SnO2 NWs electrode over the LiPF6-based electrolyte. This may be due to the formation of a stable and thin solid electrolyte interphase layer. Since bare SnO2 NWs exhibit inferior cycling stability due to... 

    Performance analysis of the lithium-ion battery RC equivalent circuit model using EPA drive cycles

    , Article 13th Power Electronics, Drive Systems, and Technologies Conference, PEDSTC 2022, 1 February 2022 through 3 February 2022 ; 2022 , Pages 393-397 ; 9781665420433 (ISBN) Larijani, M.R ; Zolghadri, M ; Kia, S. H ; El Hajjaji, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    This paper compares the dynamic and static models of a Lithium-ion battery pack with its electrochemical model as energy storage of an electric vehicle according to the environmental protection agency drive cycles. The dynamic model or the RC equivalent circuit includes a voltage source and double parallel resistor and capacitor networks which are connected in series. The static model includes a voltage source and resistors. Given drive cycles, these models are compared in terms of the battery voltage, state-of-charge, and power loss in an electric vehicle in MapleSim software. Although the state-of-charge and power loss of both models are identical to each other, actually the terminal... 

    Pre-deposited alkali (Li, Na, K) chlorides layer for effective doping of CuInSSe thin films as absorber layer in solar cells

    , Article Solar Energy ; Volume 231 , 2022 , Pages 694-704 ; 0038092X (ISSN) Hashemi, M ; Bagher Ghorashi, S. M ; Tajabadi, F ; Taghavinia, N ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    We introduce an effective method for copper indium sulfide selenide (CISSe) doping with different alkali metals (Li, Na and K) based on a pre-deposited alkali chloride layer. A simple and fast spray method is used for pre-deposition of alkali chloride layer (LiCl, NaCl, KCl) on substrate surface before spray pyrolysis deposition of copper indium disulfide CuInS2 (CIS) films followed by selenization. The different properties of alkali-doped CISSe films by the alkali chloride pre-deposition (ACPD) method were compared to the post-deposition treatment (PDT) method. Based on FESEM images, a highly compact film with large grains can be obtained for CISSe films doped with K(∼0.72 μm) and Na (∼0.56... 

    Cycling performance of LiFePO4/graphite batteries and their degradation mechanism analysis via electrochemical and microscopic techniques

    , Article Ionics ; Volume 28, Issue 1 , 2022 , Pages 213-228 ; 09477047 (ISSN) Sharifi, H ; Mosallanejad, B ; Mohammadzad, M ; Hosseini Hosseinabad, S. M ; Ramakrishna, S ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    In this work, cycling-induced aging occurring in 18650-type LiFePO4/graphite full cells at different C-rates is studied extensively. The mechanism of performance degradation is investigated using a combination of electrochemical and microstructural analyses. Half-cell studies are carried out after dismantling the full cells, using fresh and cycled LiFePO4 cathode and graphite anode to independently study them. The results show that the capacity of LiFePO4 electrodes is significantly recovered. The rate of capacity fading in the discharge state considered as irreversible capacity in the graphite is higher than LiFePO4 half cells, indicating a greater degradation in the performance of this... 

    A theory for coupled lithium insertion and viscoplastic flow in amorphous anode materials for Li-ion batteries

    , Article Mechanics of Materials ; Volume 152 , 2021 ; 01676636 (ISSN) Bagheri, A ; Arghavani, J ; Naghdabadi, R ; Brassart, L ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Amorphous lithium metal alloys (LixM, with M=Si, Ge, Sn, …) are attractive anode materials for lithium-ion batteries owing to their high energy-storage capacity and safety characteristics. However, repeated insertion of lithium often leads to chemo-mechanical degradation of the alloy, which can severely reduce the battery capacity and cycle life. Better understanding of the chemo-mechanical response of lithium alloys is needed to guide the design of damage-resistant anode microstructures. In this work, we propose a constitutive theory that couples large, viscoplastic deformations to the insertion and extraction of lithium in amorphous electrode materials. The theory relies on the concept of... 

    Step-by-step improvement of mixed-matrix nanofiber membrane with functionalized graphene oxide for desalination via air-gap membrane distillation

    , Article Separation and Purification Technology ; Volume 256 , 2021 ; 13835866 (ISSN) Fouladivanda, M ; Karimi Sabet, J ; Abbasi, F ; Moosavian, M. A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    A straightforward three-stage method was applied to fabricate a super-hydrophobic mixed-matrix nanofiber membrane using the electrospinning method for desalination purpose. First, a hydrothermal technique was applied to synthesize a super-hydrophobic nano-sheet, called octadecylamine-reduced graphene oxide (ODA-rGO) with a water contact angle of 162°, which was then added to PVDF-HFP dope solution. After, 0.005 wt% LiCl was added to the dope solution to decrease the mean pore size by increasing solution conductivity. Moreover, some membranes were hot-pressed to improve liquid entry pressure (LEP). Eventually, a top-quality nanofiber membrane was synthesized using 0.1 wt% ODA-rGO and 0.005... 

    Copper oxide@cobalt oxide core-shell nanostructure, as an efficient binder-free anode for lithium-ion batteries

    , Article Journal of Physics D: Applied Physics ; Volume 54, Issue 46 , 2021 ; 00223727 (ISSN) Jafaripour, H ; Dehghan, P ; Zare, A. M ; Sanaee, Z ; Ghasemi, S ; Sharif University of Technology
    IOP Publishing Ltd  2021
    Abstract
    Here, cobalt oxide nanostructures synthesized on vertically aligned copper oxide nanowires (NWs) have been investigated as a possible anode material for Lithium-ion batteries (LIBs). Copper oxide NWs were formed by thermal oxidation of electrochemically deposited copper on the stainless steel mesh substrate. The process used allows the formation of highly dense copper oxide NWs with excellent adhesion to the conductive current collector substrate. A simple hydrothermal method was implemented for the deposition of cobalt oxide nanostructures on the copper oxide NWs. The as-prepared binder-free copper oxide@cobalt oxide NWs electrode exhibits a high initial specific capacity of 460 mAh g-1 at... 

    PVDF/PU blend membrane separator for lithium-ion batteries via non-solvent-induced phase separation (NIPS)

    , Article Journal of Solid State Electrochemistry ; Volume 25, Issue 8-9 , 2021 , Pages 2385-2394 ; 14328488 (ISSN) Javadi, O ; Fathollahi Zonouz, A ; Soltanieh, M ; Mousavi, S. A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Membrane separator based on the polyvinylidene fluoride (PVDF) is prepared via the non-solvent-induced phase separation (NIPS) method with water and ethanol as non-solvent and a mixture of dimethylformamide (DMF) and acetone as solvent. The effect of various acetone/DMF ratios and non-solvent material on the physical and electrochemical properties of the separator is studied by FE-SEM, tensile strength, electrochemical AC-impedance spectroscopy (EIS), thermal stability, and linear sweep voltammetry (LSV). The charge-discharge studies are carried out by fabricating a lithium foil/polymer electrolyte membrane/LiFePO4 cell. The results show that with the change of solvent and non-solvent, the... 

    Enhanced electrochemical performance and thermal stability of ZrO2- And rGO-ZrO2-Coated Li[Ni0.8Co0.1Mn0.1]O2Cathode material for Li-Ion batteries

    , Article ACS Applied Energy Materials ; Volume 4, Issue 1 , 2021 , Pages 934-945 ; 25740962 (ISSN) Khalili Azar, M ; Razmjoo Khollari, M. A ; Esmaeili, M ; Heidari, E ; Hosseini Hosseinabad, S. M ; Siavash Moakhar, R ; Dolati, A ; Ramakrishna, S ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    LiNi0.8Co0.1Mn0.1O2 (NCM811) has been considered as a promising cathode for Li-ion batteries (LIBs) due to its high electrochemical capacity and low cost; however, poor cycling stability is one of the main restricting factors in industrial applications of the NCM811 cathode material. Notably, the capacity fading and low structural stability of NCM811 are intensified at elevated temperatures. ZrO2- and composite rGO-ZrO2-coated NCM811 were fabricated by a facile wet chemical method and evaluated at 25 and 55 °C to overcome these impediments. The ZrO2 coating provides superior cycling and thermal stability and perfectly protects the cathode active material from deleterious side reactions, and... 

    Fabrication, characterization, and electrochemical performance of the hdpe/sepiolite nanocomposite as a novel separator for li-ion batteries

    , Article Express Polymer Letters ; Volume 15, Issue 11 , 2021 , Pages 1063-1080 ; 1788618X (ISSN) Mohammadzad, M. Kh ; Pircheraghi, G ; Sharifi, H ; Sharif University of Technology
    BME-PT and GTE  2021
    Abstract
    Separators are one of the most critically important components of lithium-ion batteries to ensure the safe performance of the battery. Commercial polyolefin separators have high thermal shrinkage and low electrolyte uptake, which confines the application of the battery. By using the thermally induced phase separation (TIPS) method, we successfully prepared HDPE/sepiolite nanocomposite separators with high thermal stability and electrolyte wettability. The sepiolite nanofibers are modified with the Vinyltriethoxysilane (VTES) as a coupling agent for better dispersion and interaction in the HDPE matrix. The purpose of fabricating this separator is to decrease the thermal shrinkage and...