Loading...
Search for: mechanical-model
0.008 seconds
Total 83 records

    Equivalent mechanical model of liquid sloshing in multi-baffled containers

    , Article Engineering Analysis with Boundary Elements ; Vol. 47, issue. 1 , Octobe , 2014 , p. 82-95 Ebrahimian, M ; Noorian, M. A ; Haddadpour, H ; Sharif University of Technology
    Abstract
    This study presents a method to determine an equivalent mechanical model (EMM) for multi-baffled containers with arbitrary geometries. The method is implemented for 2D and axisymmetric containers. The Laplace equation and Green's theorem are used to develop the fluid model and the boundary element method (BEM) is used to solve the fluid field governing equation. Moreover, a zoning method is utilized to model arbitrary arrangements of baffles in multi-baffled containers and a reduced order model is developed to model the free-surface sloshing. The exerted hydrodynamic pressure distribution, forces and moments on the walls of the container are determined based on the Bernoulli equation and a... 

    An analytical solution to the elastic-plastic behavior of metal matrix composites under tensile loading

    , Article 29th Congress of the International Council of the Aeronautical Sciences, ICAS 2014 ; 2014 Khosoussi, S ; Mondali, M ; Abedian, A ; Sharif University of Technology
    Abstract
    An analytical approach is proposed for studying the elastic-plastic behavior of short fiber reinforced metal matrix composites under tensile loading. In the proposed method, a micromechanical approach is employed, considering an axi-symmetric unit cell including one fiber and the surrounding matrix. First, the governing equations and the boundary conditions are derived and the elastic solution is obtained based on some shear lag type methods. A plastic deformation is considered for the matrix under each small tensile loading step. Then, applying the successive elastic solutions method, all the plastic strain terms are obtained for the matrix. Thereafter, the elastic-plastic stress transfer... 

    A novel stability and kinematics-driven trunk biomechanical model to estimate muscle and spinal forces

    , Article Medical Engineering and Physics ; Vol. 36, issue. 10 , 2014 , p. 1296-1304 Hajihosseinali, M ; Arjmand, N ; Shirazi-Adl, A ; Farahmand, F ; Ghiasi, M. S ; Sharif University of Technology
    Abstract
    An anatomically detailed eighteen-rotational-degrees-of-freedom model of the human spine using optimization constrained to equilibrium and stability requirements is developed and used to simulate several symmetric tasks in upright and flexed standing postures. Predictions of this stability and kinematics-driven (S. +. KD) model for trunk muscle forces and spine compressive/shear loads are compared to those of our existing kinematics-driven (KD) model where both translational and rotational degrees-of-freedom are included but redundancy is resolved using equilibrium conditions alone. Unlike the KD model, the S. +. KD model predicted abdominal co-contractions that, in agreement with... 

    Lumbopelvic rhythm during forward and backward sagittal trunk rotations: Combined in vivo measurement with inertial tracking device and biomechanical modeling

    , Article Clinical Biomechanics ; Vol. 29, issue. 1 , 2014 , pp. 7-13 ; ISSN: 02680033 Tafazzol, A ; Arjmand, N ; Shirazi-Adl, A ; Parnianpour, M ; Sharif University of Technology
    Abstract
    Background The ratio of total lumbar rotation over pelvic rotation (lumbopelvic rhythm) during trunk sagittal movement is essential to evaluate spinal loads and discriminate between low back pain and asymptomatic population. Methods Angular rotations of the pelvis and lumbar spine as well as their sagittal rhythm during forward flexion and backward extension in upright standing of eight asymptomatic males are measured using an inertial tracking device. The effect of variations in the lumbopelvic ratio during trunk flexion on spinal loads is quantified using a detailed musculoskeletal model. Findings The mean of peak voluntary flexion rotations of the thorax, pelvis, and lumbar was 121 (SD... 

    Trunk muscle fatigue and its implications in EMG-assisted biomechanical modeling

    , Article International Journal of Industrial Ergonomics ; Volume 43, Issue 5 , 2013 , Pages 425-429 ; 01698141 (ISSN) Haddad, O ; Mirka, G.A ; Sharif University of Technology
    2013
    Abstract
    Muscle fatigue affects the underlying EMG-force relationship on which EMG-assisted biomechanical models rely. The aim of this study was to evaluate the impact of short duration muscle fatigue on the muscle gain value. Participants performed controlled, isometric trunk extension exertions at 10, 20, and 30 degrees of trunk flexion and controlled isokinetic trunk extension exertions at 5 and 15°/sec on five separate days. Fatigue of the lumbar extensors was generated by moderate-intensity, trunk extension exertions. Participants performed controlled test contractions at defined intervals throughout the fatiguing bout and the EMG activities of trunk muscles were collected. These EMG data were... 

    Optimization of a passenger occupied seat with suspension system exposed to vertical vibrations using genetic algorithms

    , Article Journal of Vibroengineering ; Volume 15, Issue 2 , 2013 , Pages 979-991 ; 13928716 (ISSN) Afkar, A ; Javanshir, I ; Ahmadian, M. T ; Ahmadi, H ; Sharif University of Technology
    2013
    Abstract
    This paper presents a biomechanical model with seven degrees of freedom as a seated human exposed to vertical vibration. Experimental data is used to find the stiffness and damping parameters of the model. The data includes values of seat to head transmissibility, driving point mechanical impedance and apparent mass. The multi-objective function is used to obtain theoretical results similar to three different experimental cases. The unknown coefficients are calculated by a genetic algorithm. Improved results, in comparison with previous models, are achieved from the presented model. Next, this modified model is assembled on a quarter car and parameters of the cushion and the suspension... 

    Dislocation density and flow stress modeling of nanostructured Al-SiC p composite during accumulative roll bonding

    , Article Computational Materials Science ; Volume 67 , February , 2013 , Pages 359-363 ; 09270256 (ISSN) Kavosi, J ; Saei, M ; Kazeminezhad, M ; Sharif University of Technology
    2013
    Abstract
    In order to investigate the dislocation structure and flow stress evolution of Al-SiCp composite during ARB process, a comprehensive model which describes the evolution of dislocation density is needed. Dislocation density, microstructure and flow stress evolution of Al-SiCp composite are predicted considering the ETMB model, strain and strain rate achieved from the mechanical model of ARB process and shear modulus calculated from the composite model. In addition, models' parameters such as dislocation generation parameters are modified due to the effect of SiC particles. The predicted results are in good agreement with experimental data  

    A multi-objective robust optimization model for logistics planning in the earthquake response phase

    , Article Transportation Research Part E: Logistics and Transportation Review ; Volume 49, Issue 1 , 2013 , Pages 217-249 ; 13665545 (ISSN) Najafi, M ; Eshghi, K ; Dullaert, W ; Sharif University of Technology
    2013
    Abstract
    Usually, resources are short in supply when earthquakes occur. In such emergency situations, disaster relief organizations must use these scarce resources efficiently to achieve the best possible emergency relief. This paper therefore proposes a multi-objective, multi-mode, multi-commodity, and multi-period stochastic model to manage the logistics of both commodities and injured people in the earthquake response. Also, a robust approach is developed and used to make sure that the distribution plan performs well under the various situations that can follow an earthquake. Afterwards, it proposes a solution methodology according to hierarchical objective functions and uses it to illustrate the... 

    Thermo-hydro-mechanical modeling of impermeable discontinuity in saturated porous media with X-FEM technique

    , Article Engineering Fracture Mechanics ; Volume 96 , December , 2012 , Pages 701-723 ; 00137944 (ISSN) Khoei, A. R ; Moallemi, S ; Haghighat, E ; Sharif University of Technology
    2012
    Abstract
    In this paper, the extended finite element method is presented for thermo-hydro-mechanical (THM) modeling of impermeable discontinuities in saturated porous media. The X-FEM technique is applied to the THM governing equations for the spatial discretization, followed by a generalized Newmark scheme for the time domain discretization. The displacement field is enriched by the Heaviside and crack tip asymptotic functions, and the pressure and temperature fields are enriched by the Heaviside and appropriate asymptotic functions. The process is accomplished by partitioning the domain with triangular sub-elements. Numerical examples are presented to demonstrate the capability of proposed technique... 

    Completeness of classical φ4 theory on two-dimensional lattices

    , Article Physical Review A - Atomic, Molecular, and Optical Physics ; Volume 85, Issue 3 , March , 2012 ; 10502947 (ISSN) Karimipour, V ; Zarei, M. H ; Sharif University of Technology
    2012
    Abstract
    We formulate a quantum formalism for the statistical mechanical models of discretized field theories on lattices and then show that the discrete version of φ4 theory on 2D square lattice is complete in the sense that the partition function of any other discretized scalar field theory on an arbitrary lattice with arbitrary interactions can be realized as a special case of the partition function of this model. To achieve this, we extend the recently proposed quantum formalism for the Ising model and its completeness property to the continuous variable case  

    Hydro-mechanical modeling of two-phase fluid flow in deforming, partially saturated porous media with propagating cohesive cracks using the extended finite element method

    , Article Computational Plasticity XI - Fundamentals and Applications, COMPLAS XI, 7 September 2011 through 9 September 2011 ; September , 2011 , Pages 1516-1527 ; 9788489925731 (ISBN) Mohammadnejad, T ; Khoei, A. R ; Sharif University of Technology
    Abstract
    In the present paper, a fully coupled numerical model is developed for the hydromechanical analysis of deforming, progressively fracturing porous media interacting with the flow of two immiscible, compressible wetting and non-wetting pore fluids. The governing equations involving the coupled two-phase fluid flow and deformation processes in partially saturated porous media containing cohesive cracks are derived within the framework of the generalized Biot theory. The displacement of the solid phase, the pressure of the wetting phase and the capillary pressure are taken as the primary unknowns of the three-phase formulation. A softening cohesive law is employed to describe the nonlinear... 

    3D modeling of damage growth and ductile crack propagation using adaptive FEM technique

    , Article Computational Plasticity XI - Fundamentals and Applications, COMPLAS XI ; 2011 , Pages 996-1007 ; 9788489925731 (ISBN) Moslemi, H ; Khoei, A.R ; Sharif University of Technology
    Abstract
    In this paper, the continuum damage mechanics model originally proposed by Lemaitre [1] is presented through an adaptive finite element method for three-dimensional ductile materials. The macro-crack initiation-propagation criterion is used based on the distribution of damage variable in the continuum damage model. The micro-crack closure effect is incorporated to simulate the damage evolution more realistic. The Zienkiewicz-Zhu posteriori error estimator is employed in conjunction with a weighted superconvergence patch recovery (SPR) technique at each patch to improve the accuracy of error estimation and data transfer process. Finally, the robustness and accuracy of proposed computational... 

    Deformation prediction of mouse embryos in cell injection experiment by a feedforward artificial neural network

    , Article Proceedings of the ASME Design Engineering Technical Conference, 28 August 2011 through 31 August 2011 ; Volume 2, Issue PARTS A AND B , August , 2011 , Pages 543-550 ; 9780791854792 (ISBN) Abbasi, A. A ; Ahmadian, M. T ; Vossoughi, G. R ; Sharif University of Technology
    2011
    Abstract
    In this study, neural network models have been used to predict the mechanical behaviors of mouse embryos. In addition, sensitivity analysis has been carried out to investigate the influence of the significance of input parameters on the mechanical behavior of mouse embryos. In order to reach these purposes two neural network models have been implemented. Experimental data earlier deduced-by [Flückiger, M. (2004). Cell Membrane Mechanical Modeling for Microrobotic Cell Manipulation. Diploma Thesis, ETHZ Swiss Federal Institute of Technology, Zurich, WS03/04]-were collected to obtain training and test data for the neural network. The results of these investigations show that the correlation... 

    Evolution of microstructures and mechanical properties in similar and dissimilar friction stir welding of AA5086 and AA6061

    , Article Materials Science and Engineering A ; Volume 528, Issue 28 , 2011 , Pages 8071-8083 ; 09215093 (ISSN) Jamshidi Aval, H ; Serajzadeh, S ; Kokabi, A. H ; Sharif University of Technology
    2011
    Abstract
    In this work, thermo-mechanical behavior and microstructural evolution in similar and dissimilar friction stir welding of AA6061-T6 and AA5086-O have been investigated. Firstly, the thermo-mechanical behaviors of materials during similar and dissimilar FSW operations have been predicted using three-dimensional finite element software, ABAQUS, then, the mechanical properties and the developed microstructures within the welded samples have been studied with the aid of experimental observations and model predictions. It is found that different strengthening mechanisms in AA5086 and AA6061 result in complex behaviors in hardness of the welded cross section where the hardness variation in similar... 

    An investigation into the deformation behaviour of AA6061-5% SiC p composite during and after hot extrusion process

    , Article Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications ; Volume 225, Issue 1 , 2011 , Pages 22-31 ; 14644207 (ISSN) Akhgar, J. M ; Mirjalili, A ; Serajzadeh, S ; Sharif University of Technology
    Abstract
    In this study, hot extrusion of AA6061-5% SiCp composite was studied to determine the composite thermo-mechanical behaviour during deformation and the mechanical properties of extruded composite. Hot compression tests were first carried out to obtain the flow stress behaviour of the composite at different temperatures and strain rates. Then a mathematical model was used to estimate the required energy as well as to predict temperature and strain distributions during the process. Finally, hot extrusion experiments were performed in order to verify the predictions and, also, tensile and hardness testing were conducted to evaluate mechanical properties of extruded material. Comparison between... 

    Incorporating multiscale micromechanical approach into PLSNs with different intercalated morphologies

    , Article Journal of Applied Polymer Science ; Volume 119, Issue 6 , September , 2011 , Pages 3347-3359 ; 00218995 (ISSN) Yazdi, A. Z ; Bagheri, R ; Kazeminezhad, M ; Heidarian, D ; Sharif University of Technology
    2011
    Abstract
    The objective of the present study is to predict Young's modulus of polymer-layered silicate nanocomposites (PLSNs) containing fully intercalated structures. The particular contribution of this article is to consider the changes in structural parameters of different intercalated morphologies in vicinity of each other. These parameters include aspect ratio of intercalated stacks, number of silicate layers per stack, d-spacing between the layers, modulus of the gallery phase, and volume fraction of each intercalated morphology. To do this, the effective particle concept has been employed and combined with the Mori-Tanaka micromechanical model. It has been shown that the simultaneous effects of... 

    The influence of tool geometry on the thermo-mechanical and microstructural behaviour in friction stir welding of AA5086

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 225, Issue 1 , 2011 , Pages 1-16 ; 09544062 (ISSN) Jamshidi Aval, H ; Serajzadeh, S ; Kokabi, A. H ; Sharif University of Technology
    2011
    Abstract
    In this work, the effect of tool geometric parameters on thermo-mechanical behaviour in friction stir welding of AA5086 has been investigated. For doing so, the thermo-mechanical responses of material during welding with different tools have been predicted by a three-dimensional finite-element model using the finite-element code ABAQUS. In addition, welding experiments have been carried out to study the developed microstructures and the mechanical properties of welded alloy. The results show that tool geometry significantly affects the energy input, deformation pattern, plunge force, microstructures, and mechanical properties of the joint. The conical tool with the shoulder angle of 2° has... 

    An optimization-based method for prediction of lumbar spine segmental kinematics from the measurements of thorax and pelvic kinematics

    , Article International Journal for Numerical Methods in Biomedical Engineering ; July , 2015 , Volume 31, Issue 12 ; 20407939 (ISSN) Shojaei, I ; Arjmand, N ; Bazrgari, B ; Sharif University of Technology
    Wiley-Blackwell  2015
    Abstract
    Given measurement difficulties, earlier modeling studies have often used some constant ratios to predict lumbar segmental kinematics from measurements of total lumbar kinematics. Recent imaging studies suggested distribution of lumbar kinematics across its vertebrae changes with trunk rotation, lumbar posture, and presence of load. An optimization-based method is presented and validated in this study to predict segmental kinematics from measured total lumbar kinematics. Specifically, a kinematics-driven biomechanical model of the spine is used in a heuristic optimization procedure to obtain a set of segmental kinematics that, when prescribed to the model, were associated with the minimum... 

    DFT investigations for "Fischer" esterification mechanism over silica-propyl-SO3H catalyst: Is the reaction reversible?

    , Article Computational and Theoretical Chemistry ; Volume 1071 , 2015 , Pages 27-32 ; 2210271X (ISSN) Vafaeezadeh, M ; Fattahi, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    For the first time, the mechanism of Fischer esterification between acetic acid and ethanol over silica-functionalized propylsulfonic acid (silica-propyl-SO3H) catalyst was explored by means of computational modeling techniques. For this purpose, 6-edge-atom cage-like cluster comprising Si-O-Si sequences has been selected to represent the surface of the catalyst. The results indicate that the reaction goes through concerted transition states. In all optimized structures no proton (H+) transfer occurs from catalyst to the substrates and the role of the catalyst is via the activation of the substrates through the formation of strong hydrogen bonds (H-bonds). Furthermore, the energetic diagram... 

    A new approach to the elastic–plastic stress transfer analysis of metal matrix composites

    , Article Archive of Applied Mechanics ; Volume 85, Issue 11 , November , 2015 , Pages 1701-1717 ; 09391533 (ISSN) Khosoussi, S ; Mondali, M ; Abedian, A ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    An analytical approach is proposed for studying the elastic–plastic behavior of short-fiber-reinforced metal matrix composites under tensile loading. In the proposed research, a micromechanical approach is employed, considering an axisymmetric unit cell including one fiber and the surrounding matrix. First, the governing equations and the boundary conditions are derived and the elastic solution is obtained based on some shear-lag-type methods. Since under normal loading conditions and according to the fiber material characteristics, the metal matrix undergoes plastic deformation, while the fiber remains within the elastic region, a plastic deformation is considered for the matrix under each...