Loading...
Search for: mimo
0.011 seconds
Total 225 records

    A joint scheme of antenna placement and power allocation in a compressive-sensing-based colocated MIMO radar

    , Article IEEE Sensors Letters ; Volume 6, Issue 10 , 2022 ; 24751472 (ISSN) Ajorloo, A ; Amini, A ; Amiri, R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    The spatial sparsity of targets in the radar scene is widely used in multiple-input multiple-output (MIMO) radar signal processing, either to improve the detection/estimation performance of the radar or to reduce the cost of the conventional MIMO radars (e.g., by reducing the number of antennas). While sparse target estimation is the main challenge in such an approach, here, we address the design of a compressive-sensing-based MIMO radar, which facilitates such estimations. In particular, we propose an efficient solution for the problem of joint power allocation and antenna placement based on minimizing the number of transmit antennas while constraining the coherence of the sensing matrix.... 

    Angle-incremental range estimation for FDA-MIMO radar via hybrid sparse learning

    , Article Digital Signal Processing: A Review Journal ; Volume 130 , 2022 ; 10512004 (ISSN) Karbasi, S. M ; Sharif University of Technology
    Elsevier Inc  2022
    Abstract
    In this paper, a target parameter estimation problem is addressed for the recently emerging frequency diverse array multiple-input multiple-output (FDA-MIMO) radar system, utilizing sparse learning. The scene is modeled as a two dimensional (2D) angle-incremental range grid. To solve the resulting sparse problem, the recently proposed user-parameter free algorithms including block sparse learning via iterative minimization (BSLIM), iterative adaptive approach (IAA), sparse iterative covariance-based estimation (SPICE), likelihood-based estimation of sparse parameters (LIKES), and orthogonal matching pursuit (OMP) are applied which achieve excellent parameter estimation performance. However,... 

    Interference alignment for the k-user MIMO interference channel

    , Article IEEE Transactions on Information Theory ; Volume 68, Issue 3 , 2022 , Pages 1401-1411 ; 00189448 (ISSN) Ghasemi, A ; Motahari, A. S ; Khandani, A. K ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    We consider the K-user Multiple Input Multiple Output (MIMO) Gaussian interference channel with M antennas at each transmitter and N antennas at each receiver. It is assumed that channel coefficients are constant real numbers and are available at all transmitters and at all receivers. The main objective of this paper is to characterize the number of Degrees of Freedom (DoF) of this channel. Using the real interference alignment technique introduced in Motahari et al., 2014, we show that MN M+N K degrees of freedom can be achieved for almost all channel realizations. Also, a new upper-bound on the DoF of this channel is provided. This upper-bound coincides with our achievable DoF for K K u... 

    Degrees of freedom of the K-User Interference channel assisted by active and passive IRSs

    , Article IEEE Transactions on Communications ; Volume 70, Issue 5 , 2022 , Pages 3063-3080 ; 00906778 (ISSN) Abdollahi Bafghi, A. H ; Jamali, V ; Nasiri Kenari, M ; Schober, R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    In this paper, we study the degrees of freedom (DoF) region and sum DoF of the time-selective K-user interference channel in the presence of intelligent reflecting surfaces (IRSs). We consider both active and passive IRSs. While both types of IRS can attenuate the amplitude and change the phase of a reflected electromagnetic wave, active IRSs are also capable of amplifying the wave. We derive inner and outer bounds for the DoF region and lower and upper bounds for the sum DoF of the K-user interference channel in the presence of an active IRS and prove that the maximum value of K for the sum DoF can be achieved if the number of IRS elements exceeds a certain finite value. The analysis... 

    Firtual hardware-in-the-loop FMU CO-simulation based digital twins for heating, ventilation, and air-conditioning (HVAC) systems

    , Article IEEE Transactions on Emerging Topics in Computational Intelligence ; 2022 , Pages 1-11 ; 2471285X (ISSN) Abrazeh, S ; Mohseni, S ; Zeitouni, M. J ; Parvaresh, A ; Fathollahi, A ; Gheisarnejad, M ; Khooban, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    In this paper, a novel self-adaptive control method based on a digital twin is developed and investigated for a multi-input multi-output (MIMO) nonlinear system, which is a heating, ventilation, and air-conditioning system. For this purpose, hardware-in-loop (HIL) and software-in-loop (SIL) are integrated to develop the digital twin control concept in a straightforward manner. A nonlinear integral backstepping (NIB) model-free control technique is integrated with the HIL (implemented as a physical controller) and SIL (implemented as a virtual controller) controllers to control the HVAC system without the need for dynamic feature identification. The main goal is to design the virtual... 

    Feasibility of a novel beamforming algorithm via retrieving spatial harmonics

    , Article Journal of Systems Engineering and Electronics ; Volume 33, Issue 1 , 2022 , Pages 38-46 ; 16711793 (ISSN) Norolahi, J ; Azmi, P ; Nasirian, M ; Sharif University of Technology
    Beijing Institute of Aerospace Information  2022
    Abstract
    This paper introduces an algorithm for beamforming systems by the aid of multidimensional harmonic retrieval (MHR). This algorithm resolves problems, removes limitations of sampling and provides a more robust beamformer. A new sample space is created that can be used for estimating weights of a new beamforming called spatial-harmonics retrieval beamformer (SHRB). Simulation results show that SHRB has a better performance, accuracy, and applicability and more powerful eigenvalues than conventional beamformers. A simple mathematical proof is provided. By changing the number of harmonics, as a degree of freedom that is missing in conventional beamformers, SHRB can achieve more optimal outputs... 

    Multi-Sender index coding over linear networks

    , Article IEEE Communications Letters ; Volume 26, Issue 2 , 2022 , Pages 273-276 ; 10897798 (ISSN) Ghaffari, F ; Shariatpanahi, S. P ; Jafari Siavoshani, M ; Bahrak, B ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    We consider an index coding problem in which several transmitters deliver distinct files to a number of users with minimum delay. Each user has access to a subset of other files from the library, which can be used as side information. The information sent by the transmitters experience a linear transformation before being received at the users. By benefiting from the concept of Zero-Forcing in MIMO systems, we generalize the notion of MinRank characterization and the clique cover algorithm to accommodate this generalized setting. We show that increasing the number of transmitters can substantially reduce the delivery delay. © 1997-2012 IEEE  

    Modified joint channel-and-data estimation for one-bit massive MIMO

    , Article 53rd IEEE International Symposium on Circuits and Systems, ISCAS 2021, 22 May 2021 through 28 May 2021 ; Volume 2021-May , 2021 ; 02714310 (ISSN); 9781728192017 (ISBN) Bahari, M ; Rasoulinezhad, Ramin ; Amiri, M ; Gilani, F ; Saadatnejad, S ; Nezamalhosseini, A. R ; Shabany, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    Centralized and cloud computing-based network architectures are the promising tracks of future communication systems where a large scale compute power can be virtualized for various algorithms. These architectures rely on high-performance communication links between the base stations and the central computing systems. On the other hand, massive Multiple-Input Multiple-Output (MIMO) technology is a promising solution for base stations toward higher spectral efficiency. To reduce system complexity and energy consumption, 1-bit analog-to-digital converters (ADCs) are leveraged with the cost of lowering the signal quality. To recover the lost information, more sophisticated algorithms, like... 

    Interference alignment for the K-User MIMO interference channel

    , Article IEEE Transactions on Information Theory ; 2021 ; 00189448 (ISSN) Ghasemi, A ; Seyed Motahari, A ; Khandani, A. K ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    We consider the K-user Multiple Input Multiple Output (MIMO) Gaussian interference channel with M antennas at each transmitter and N antennas at each receiver. It is assumed that channel coefficients are constant real numbers and are available at all transmitters and at all receivers. The main objective of this paper is to characterize the number of Degrees of Freedom (DoF) of this channel. Using the real interference alignment technique introduced in [20], we show that MN/M+NK degrees of freedom can be achieved for almost all channel realizations. Also, a new upper-bound on the DoF of this channel is provided. This upper-bound coincides with our achievable DoF for K ≥ Ku≜M+N/gcd(M;N), where... 

    Data association for multi-target elliptic localization in distributed MIMO radars

    , Article IEEE Communications Letters ; Volume 25, Issue 9 , 2021 , Pages 2904-2907 ; 10897798 (ISSN) Kazemi, S. A. R ; Amiri, R ; Behnia, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    In this letter, an efficient method for solving the multi-target localization problem in distributed MIMO radars is proposed. The proposed method attempts to simultaneously carry out the localization and data association tasks by formulating a mixed-integer optimization problem, which is approximated as a convex problem that can be efficiently solved with a polynomial complexity. Numerical simulations substantiate the efficacy of the proposed method. © 1997-2012 IEEE  

    A nonlinear model predictive controller based on the gravitational search algorithm

    , Article Optimal Control Applications and Methods ; Volume 42, Issue 6 , 2021 , Pages 1734-1761 ; 01432087 (ISSN) Nobahari, H ; Alizad, M ; Nasrollahi, S ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    A heuristic nonlinear model predictive controller is proposed, based on the gravitational search algorithm. The proposed method models a constrained nonlinear model predictive control problem in the form of a dynamic optimization and uses a set of virtual particles, moving within the search space, to find the best control sequence in an online manner. Particles affect the movement of each other through the gravitational forces. The optimality of the points, experienced by the particles, is evaluated by a cost function. This function reduces the tracking error, control effort, and control chattering. The better control sequence a particle finds, the more mass is assigned to that particle.... 

    Target localization geometry gain in distributed MIMO radar

    , Article IEEE Transactions on Signal Processing ; Volume 69 , 2021 , Pages 1642-1652 ; 1053587X (ISSN) Sadeghi, M ; Behnia, F ; Amiri, R ; Farina, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    In this paper, we analyze the accuracy of target localization in multiple-input multiple-output (MIMO) radars with widely-separated antennas. The relative target-antennas geometry plays an important role in target localization. We investigate the optimal placement of transmit and receive antennas for coherent and non-coherent processing, based on maximizing the determinant of the Fisher information matrix (FIM), which is equivalent to minimizing the error ellipse area. The square root of the average determinant of the FIM can be expressed as a product of three parameters, namely the equivalent single radar gain, coherency gain and geometry gain. It is shown that the coherency gain of... 

    Massive MIMO-NOMA systems secrecy in the presence of active eavesdroppers

    , Article 30th International Conference on Computer Communications and Networks, ICCCN 2021, 19 July 2021 through 22 July 2021 ; Volume 2021-July , 2021 ; 10952055 (ISSN); 9780738113302 (ISBN) Soltani, M ; Mirmohseni, M ; Papadimitratos, P ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    Non-orthogonal multiple access (NOMA) and massive multiple-input multiple-output (MIMO) systems are highly efficient. Massive MIMO systems are inherently resistant to passive attackers (eavesdroppers), thanks to transmissions directed to the desired users. However, active attackers can transmit a combination of legitimate user pilot signals during the channel estimation phase. This way they can mislead the base station (BS) to rotate the transmission in their direction, and allow them to eavesdrop during the downlink data transmission phase. In this paper, we analyse this vulnerability in an improved system model and stronger adversary assumptions, and investigate how physical layer security... 

    Full diversity space time block codes with improved power distribution characteristics

    , Article Physical Communication ; Volume 39 , 2020 Abbasi, V ; Shayesteh, M. G ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this paper, we introduce a technique for improving power distribution characteristics of space time block codes (STBCs) which include peak to average power ratio (PAPR), average to minimum power ratio (Ave/min), and probability of transmitting “zero” by antenna. We consider STBCs in multiple input multiple output (MIMO) and multiple input single output (MISO) systems that achieve full diversity for linear or maximum likelihood (ML) receivers. It is proved that by multiplying a specific non-singular square matrix by the code matrix, a new code is obtained that achieves full diversity and the power distribution characteristics are improved. The proposed technique is general can be applied... 

    Antenna placement in a compressive sensing-based colocated mimo radar

    , Article IEEE Transactions on Aerospace and Electronic Systems ; Volume 56, Issue 6 , 2020 , Pages 4606-4614 Ajorloo, A ; Amini, A ; Tohidi, E ; Bastani, M. H ; Leus, G ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Compressive sensing (CS) has been widely used in multiple-input-multiple-output (MIMO) radar in recent years. Unlike traditional MIMO radar, detection/estimation of targets in a CS-based MIMO radar is accomplished via sparse recovery. In this article, for a CS-based colocated MIMO radar with linear arrays, we attempt to improve the target detection performance by reducing the coherence of the associated sensing matrix. Our tool in reducing the coherence is the placement of the antennas across the array aperture. In particular, we choose antenna positions within a given grid. Initially, we formalize the position selection problem as finding binary weights for each of the locations. This... 

    Adaptive finite-time fault-tolerant controller for a class of uncertain MIMO nonlinear switched systems subject to output constraints and unknown input nonlinearities

    , Article Nonlinear Analysis: Hybrid Systems ; Volume 35 , February , 2020 Moradvandi, A ; Malek, S. A ; Shahrokhi, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this work, design of an adaptive finite-time fault-tolerant controller for a class of uncertain multi-input multi-output (MIMO) nonlinear switched systems with unmodeled dynamics subject to asymmetric time-varying output constraints and unknown faulty input nonlinearities has been addressed. The number of actuator faults can be infinite. In addition, the proposed control algorithm can cope with different unknown types of input nonlinearities namely, saturation, dead zone, backlash, and hysteresis. Actuator faults and input nonlinearities can be different in different modes. To estimate the system uncertainties, neural networks (NNs) have been employed and the unmodeled dynamics has been... 

    On the relaxed maximum-likelihood blind MIMO channel estimation for orthogonal space-time block codes

    , Article Signal Processing ; Volume 175 , October , 2020 Kalbasi, K ; Golestani, S. J ; Sharif University of Technology
    Elsevier B. V  2020
    Abstract
    This paper concerns the maximum-likelihood channel estimation for MIMO systems with orthogonal space-time block codes when the finite alphabet constraint of the signal constellation is relaxed. We study the channel coefficients estimation subspace generated by this method. We provide an algebraic characterisation of this subspace which turns the optimization problem into a purely algebraic one and more importantly, leads to several interesting analytical proofs. We prove that with probability one, the dimension of the estimation subspace for the channel coefficients is deterministic and it decreases by increasing the number of receive antennas up to a certain critical number of receive... 

    An approximate ml estimator for moving target localization in distributed mimo radars

    , Article IEEE Signal Processing Letters ; Volume 27 , 2020 , Pages 1595-1599 Kazemi, S. A. R ; Amiri, R ; Behnia, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    This letter deals with the problem of moving target localization in distributed multiple-input multiple-output (MIMO) radar systems using time delay (TD) and Doppler shift (DS) measurements. The proposed solution to this problem consists of two stages. In the first stage, an initial estimation of target location is obtained by solving the formulated maximum likelihood (ML) problem based on the TD measurements. In the second stage, by recognizing the obtained position estimate in the previous stage as a priori data and exploiting the DS measurements, another ML problem is formulated, which is efficiently solved via a tractable numerical method to produce a simultaneous estimation of target... 

    Efficient joint localization and synchronization in distributed mimo radars

    , Article IEEE Signal Processing Letters ; Volume 27 , 2020 , Pages 1200-1204 Kazemi, S. A. R ; Amiri, R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    This letter addresses the problem of joint localization and clock synchronization in distributed multiple-input multiple-output (MIMO) radar systems. While the well-known two-stage weighted least squares (WLS) method provides an acceptable estimate of target position when a rough approximation of antennas clock parameters, the drifts and offsets, is available, its performance can degrade quickly if the level of uncertainty in these values increases. The proposed method offers a solution for synchronizing the clocks while simultaneously improving the target position estimate. The uncertainty in positions of antennas is also taken into account. The presented method is shown to be approximately... 

    Emotional learning based intelligent controller for MIMO peripheral milling process

    , Article Journal of Applied and Computational Mechanics ; Volume 6, Issue 3 , 2020 , Pages 480-492 Bahari Kordabad, A ; Boroushaki, M ; Sharif University of Technology
    Shahid Chamran University of Ahvaz  2020
    Abstract
    During the milling process, one of the most important factors in reducing tool life expectancy and quality of workpiece is the chattering phenomenon due to self-excitation. The milling process is considered as a MIMO strongly coupled nonlinear plant with time delay terms in cutting forces. We stabilize the plant using two independent Emotional Learning-based Intelligent Controller (ELIC) in parallel. Control inputs are considered as forces Ux and Uy in two directions x and y, which are applied by the piezoelectrics. The ELIC consists of three elements; Critic, TSK controller and the learning element. The results of the ELIC have been compared with a Sliding Mode Controller (SMC). The...