Loading...
Search for: nanopores
0.005 seconds
Total 93 records

    Electrochemical behavior of S-doped nanostructured TiO2 layer synthesized with PEO process for photocatalytic applications

    , Article Advanced Materials Research ; Volume 829 , 2014 , Pages 487-491 ; ISSN: 10226680 ; ISBN: 9783037859070 Ahmadzadeh, M ; Ghorbani, M ; Sharif University of Technology
    Abstract
    Sulfur doped and pure micro-nanoporous TiO2 film were synthesized with PEO method to produce a film with a high surface area for photocatalysis applications. The effect of applied voltage and electrolyte concentration on the microstructure and photocatalytic properties of the prepared layer were investigated via SEM, XRD, EIS and DRS studies. Electrochemical Impedance Spectroscopy (EIS) was carried out in order to determine the corrosion and electrochemical properties of the produced layer. It was found that although the barrier layer resistance decreases with the voltage, the layers porosity and consequently the surface area increases. Finally the XRD and DRS spectrums were correlated with... 

    Improved pseudo-capacitive performance of nano-porous manganese oxide on an electrochemically derived nickel framework

    , Article Analytical Letters ; Volume 46, Issue 15 , October , 2013 , Pages 2372-2387 ; 00032719 (ISSN) Gobal, F ; Jafarzadeh, S ; Sharif University of Technology
    2013
    Abstract
    The pseudocapacitance and morphology of electrodeposited transition metal oxides depend significantly on the morphology of the substrate. The nanoporous nickel substrate, derived from selective electro-dissolution of antimony from an electro-deposited Ni-Sb alloy, effectively promotes the electrochemical utilization of manganese oxide deposited on this structure. The large electronic and ionic conduction within the nanostructured deposit improve the energy storage performance of Mn oxide as compared to that on flat Ni substrate. In this work, the MnO2 specific capacitances of around 612 F g-1 were obtained, which was five times higher than Mn oxide deposited on a flat Ni-ribbon. A highly... 

    Fabrication of nanoporous nickel oxide by de-zincification of Zn-Ni/(TiO2-nanotubes) for use in electrochemical supercapacitors

    , Article Electrochimica Acta ; Volume 100 , 2013 , Pages 133-139 ; 00134686 (ISSN) Gobal, F ; Faraji, M ; Sharif University of Technology
    2013
    Abstract
    NiO-ZnO/TiO2NTs electrodes were synthesized by the electrodeposition of Zn-Ni onto TiO2 nanotubes, dealloying in a concentrated alkaline solution and finally calcination of the resulting Zn(OH)2-Ni(OH)2/TiO2NTs at 300 C. Morphology of the electrodeposited nanostructures was studied using scanning electron microscopy (SEM) while their electrochemical characterizations were carried out using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge procedures. The SEM analysis revealed the nanoporous/cracked structures of the NiO-ZnO/TiO2NTs obtained at the electroplating time of 20 min. The EIS studies showed that nanoporous/cracked structures of... 

    HRP-dendron nanoparticles: The efficient biocatalyst for enzymatic polymerization of poly(2,5-dimethoxyaniline)

    , Article Journal of Molecular Catalysis B: Enzymatic ; Volume 90 , June , 2013 , Pages 139-143 ; 13811177 (ISSN) Khosravi, A ; Vossoughi, M ; Shahrokhian, S ; Alemzadeh, I ; Sharif University of Technology
    2013
    Abstract
    Synthesis of poly(2,5-dimethoxyanilie) (PDMA) catalyzed by nano reengineered horseradish peroxidase (HRP) with dendritic macromolecules, was studied as a function of reaction media. UV-vis, gel permeation chromatography and conductivity measurements were used to explain how the reaction media compositions influence the physical properties of PDMA. Nanostructured PDMA was also synthesized by oxidative polymerization in a novel and green bi-catalyst system involving HRP and ferric chloride. FTIR and UV-vis analysis confirmed the formation of emeraldine salt state of PDMA. The thermal stability of reengineered HRP granted further studies on the polymerization using bi-catalyst system at... 

    Uranium recovery from UCF liquid waste by nanoporous MCM-41: Breakthrough capacity and elution behavior studies

    , Article Research on Chemical Intermediates ; Volume 39, Issue 3 , 2013 , Pages 951-959 ; 09226168 (ISSN) Mousavi, S. M ; Tavakoli, H ; Samadfam, M ; Semnani, F ; Asadi, Z ; Sepehrian, H ; Sharif University of Technology
    2013
    Abstract
    Adsorption and recovery of uranium by nanoporous MCM-41 from aqueous solutions (synthetic solution and uranium conversion facility liquid waste) were investigated by use of a fixed-bed column (1.2 cm diameter and 3.0 cm height). Adsorption was carried out at flow rates 0.2 and 0.5 mL min-1, which correspond to retention times of 10 and 6 min. The maximum breakthrough capacity for uranium ions was achieved by use of nanoporous MCM-41 at the optimum pH of 3.6 and flow rate 0.2 mL min-1 (61.95 μg g-1). The Thomas and Yan models were applied to the experimental data, by use of linear regression, to determine the characteristics of the column for process design. The breakthrough curves calculated... 

    Manipulating failure mechanism of rapid prototyped scaffolds by changing nodal connectivity and geometry of the pores

    , Article Journal of Biomechanics ; Volume 45, Issue 16 , 2012 , Pages 2866-2875 ; 00219290 (ISSN) Amirkhani, S ; Bagheri, R ; Zehtab Yazdi, A ; Sharif University of Technology
    2012
    Abstract
    The performance of cellular solids in biomedical applications relies strongly on a detailed understanding of the effects of pore topology on mechanical properties. This study aims at characterizing the failure mechanism of scaffolds based on nodal connectivity (number of struts that meet in joints) and geometry of the pores. Plastic models of scaffolds having the same relative density but different cubic and trigonal unit cells were designed and then fabricated via three dimensional (3-D) printing. Unit cells were repeated in different arrangements in 3-D space. An in-situ imaging technique was utilized to study the progressive deformation of the scaffold models. Different nodal... 

    Studies on the recovery of uranium from nuclear industrial effluent using nanoporous silica adsorbent

    , Article International Journal of Environmental Science and Technology ; Volume 9, Issue 4 , October , 2012 , Pages 629-636 ; 17351472 (ISSN) Sepehrian, H ; Samadfam, M ; Asadi, Z ; Sharif University of Technology
    Springer  2012
    Abstract
    In this paper, the sorption of uranium onto nanoporous silica adsorbent in the presence of nitrate, sulfate, chloride, fluoride and phosphate was studied. The effect of contact time between the nanoporous sorbent and aqueous solution, pH and initial concentration of uranium was also investigated. Uranium sorption onto nanoporous silica adsorbent is a very fast process as sorption rate increases with pH increment. Optimum pH for uranium sorption was 4-8. Experimental sorption isotherm is successfully described by Langmuir and Freundlich models. The results obtained by batch experiments showed that the presence of high concentration of nitrate, sulfate, chloride and phosphate anions alone had... 

    Effects of surface residual stress and surface elasticity on the overall yield surfaces of nanoporous materials with cylindrical nanovoids

    , Article Mechanics of Materials ; Volume 51 , 2012 , Pages 74-87 ; 01676636 (ISSN) Moshtaghin, A. F ; Naghdabadi, R ; Asghari, M ; Sharif University of Technology
    Elsevier  2012
    Abstract
    Mechanical properties of a material near the surfaces and interfaces are different from those of the same material far from the surfaces/interfaces. The effect of this difference on the effective mechanical properties of heterogeneous materials becomes significant when the size of inhomogeneities is at the scale of nanometers. In this article, within a micromechanical framework, the effects of surface residual stress and surface elasticity are taken into account to obtain a macroscopic size-dependent yield function for nanoporous materials containing aligned cylindrical nanovoids. Based on the modified Hill's condition, the strains are decomposed into two parts, a part due to the external... 

    Submicron nanoporous polyacrylamide beads with tunable size for verapamil imprinting

    , Article Journal of Applied Polymer Science ; Volume 125, Issue 1 , 2012 , Pages 189-199 ; 00218995 (ISSN) Nematollahzadeh, A ; Abdekhodaie, M. J ; Shojaei, A ; Sharif University of Technology
    2012
    Abstract
    Submicron sized polyacrylamide particles were prepared via modified precipitation polymerization method. Experimental design based on Taguchi approach was employed to study the influence of the polymerization composition including monomer (acrylamide), crosslinker (methylenebisacrylamide), initiator (azobisisobutyronitrile), and modifier (polyvinylpyrrolidone, K-30), on the size and morphology of the particles. Varying the polymerization composition, submicron-particles with sizes ranging between 100 and 600 nm were achieved. In all the cases, polydispersity index (PDI) of the particle size was found to be almost 1 indicating uniformity of the particle size. The concentration of crosslinker... 

    First passage time distribution of chaperone driven polymer translocation through a nanopore: Homopolymer and heteropolymer cases

    , Article Journal of Chemical Physics ; Volume 135, Issue 24 , 2011 ; 00219606 (ISSN) Abdolvahab, R. H ; Metzler, R ; Ejtehadi, M. R ; Sharif University of Technology
    2011
    Abstract
    Combining the advection-diffusion equation approach with Monte Carlo simulations we study chaperone driven polymer translocation of a stiff polymer through a nanopore. We demonstrate that the probability density function of first passage times across the pore depends solely on the Péclet number, a dimensionless parameter comparing drift strength and diffusivity. Moreover it is shown that the characteristic exponent in the power-law dependence of the translocation time on the chain length, a function of the chaperone-polymer binding energy, the chaperone concentration, and the chain length, is also effectively determined by the Péclet number. We investigate the effect of the chaperone size on... 

    Fabrication of HAp-8YSZ composite layer on Ti/TiO2 nanoporous substrate by EPD/MAO method

    , Article Materials Letters ; Volume 65, Issue 23-24 , 2011 , Pages 3421-3423 ; 0167577X (ISSN) Hekmatfar, M ; Moshayedi, Sh ; Ghaffari, S. A ; Rezaei, H. R ; Golestani Fard, F ; Sharif University of Technology
    Abstract
    Zirconia/Hydroxyapatite composites containing 20-50 wt.% 8YSZ were prepared on Ti/TiO2 substrates by electrophoretic deposition (EPD)/micro-arc oxidation (MAO) process. Titania, as an inner layer, was grown on the Ti plates using MAO treatment in order to form a strong join between substrate and HAp. These composites were produced by EPD in ethanol containing ZrO2/HAp particles at 50, 100 and 150 V in 1 min. Asprepared samples were sintered at 900, 1100 and 1300 °C. HAp, β-TCP, CaZrO3 phases were identified using X-ray diffractometry analysis (XRD). Scanning electron microscopy (SEM) utilized to study the surface morphology indicated a crack free microstructure at 1300 °C  

    Synthesis of nanostructured and nanoporous TiO2-AgO mixed oxide derived from a particulate sol-gel route: Physical and sensing characteristics

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 42, Issue 8 , August , 2011 , Pages 2481-2492 ; 10735623 (ISSN) Mohammadi, M. R ; Fray, D. J ; Sharif University of Technology
    2011
    Abstract
    Nanocrystalline TiO2-AgO thin films and powders were prepared by an aqueous particulate sol-gel route at the low temperature of 573 K (300 °C). Titanium tetraisopropoxide and silver nitrate were used as precursors, hydroxypropyl cellulose was used as a polymeric fugitive agent in order to increase the specific surface area. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that the phase composition of the mixed oxide depends upon the annealing temperature, being a mixture of TiO2 and AgO in the range 573 K to 773 K (300 °C to 500 °C) and a mixture of TiO2, AgO, Ag2O at 973 K (700 °C). Furthermore, one of the smallest crystallite sizes was obtained for TiO... 

    UV-prepared salep-based nanoporous hydrogel for controlled release of tetracycline hydrochloride in colon

    , Article Journal of Photochemistry and Photobiology B: Biology ; Volume 102, Issue 3 , March , 2011 , Pages 232-240 ; 10111344 (ISSN) Bardajee, G. R ; Pourjavadi, A ; Ghavami, S ; Soleyman, R ; Jafarpour, F ; Sharif University of Technology
    2011
    Abstract
    A highly swelling nanoporous hydrogel (NPH) was synthesized via UV-irradiation graft copolymerization of acrylic acid (AA) onto salep backbone and its application as a carrier matrix for colonic delivery of tetracycline hydrochloride (TH) was investigated. Optimized synthesis of the hydrogel was performed by the classic method. The swelling behavior of optimum hydrogel was measured in different media. The hydrogel formation was confirmed by Fourier transform infrared spectroscopy (FTIR) and thermo-gravimetric analysis (TGA/DTG/DTA). The study of the surface morphology of hydrogels using SEM showed a nanoporous (average pore size: about 350 nm) structure for the sample obtained under... 

    Sequence dependence of the binding energy in chaperone-driven polymer translocation through a nanopore

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 83, Issue 1 , January , 2011 ; 15393755 (ISSN) Abdolvahab, R. H ; Ejtehadi, M. R ; Metzler, R ; Sharif University of Technology
    2011
    Abstract
    We study the translocation of stiff polymers through a nanopore, driven by the chemical-potential gradient exerted by binding proteins (chaperones) on the trans side of the pore. Bound chaperones prevent backsliding through the pore and, therefore, partially rectify the polymer passage. We show that the sequence of chain monomers with different binding affinity for the chaperones significantly affects the translocation dynamics. In particular, we investigate the effect of the nearest-neighbor adjacency probability of the two monomer types. Depending on the magnitude of the involved binding energies, the translocation speed may either increase or decrease with the adjacency probability. We... 

    Novel highly swelling nanoporous hydrogel based on polysaccharide/protein hybrid backbone

    , Article Journal of Polymer Research ; Volume 18, Issue 3 , 2011 , Pages 337-346 ; 10229760 (ISSN) Bardajee, G. R ; Pourjavadi, A ; Soleyman, R ; Sharif Unviersity of Technology
    2011
    Abstract
    Novel high capacity swelling nanoporous hydrogel (NPH) was synthesized via graft copolymerization of acrylamide (AAm) onto kappa-carrageenan (kC, as a polysaccharide) and gelatin (as a protein) hybrid backbone, after hydrolysis of this system. The Taguchi method as a strong experimental design tool was used for its optimized synthesis. The Taguchi method was applied for the experimental and standard 9 orthogonal array (OA) with four factors and three levels for each factor. A series of NPHs were synthesized by proposed conditions of Qualitek-4 Software. Considering the results of 9 trials according to analysis of variance (ANOVA), optimum conditions were proposed. The swelling behavior of... 

    Coke Deposition Process in Nano-Pores of Naphtha Reforming Catalyst

    , M.Sc. Thesis Sharif University of Technology Farahipour, Reza (Author) ; Baghalha, Morteza (Supervisor) ; Kazemeini, Mohammad (Supervisor)
    Abstract
    Nowadays catalytic reforming of naphtha is one of the most important parts of the refining process. The catalyst of this process is mostly Pt-Re on the γ-alumina support. The major cause of deactivation is coke deposition and blockage of the pores as a result. Meanwhile, modeling of the process and the deactivation of catalyst would help refining industries to achieve higher yields. In this study industrial data of the catalytic reforming unit #2 in Isfahan Refinery Plant were used to model the process, optimized parameters have been calculated and the best contribution of the catalyst among the four reactors was presented. Then with using a deactivation function the whole coking... 

    Uranium Recovery From Liquid Waste of UCF Plant With Ion Exchange Resin Method

    , M.Sc. Thesis Sharif University of Technology Asadi, Zahra (Author) ; Samadfam, Mohammad (Supervisor) ; Sepehrian, Hamid (Supervisor)
    Abstract
    During the various stages of uranium processing in Uranium Conversion Facility (UCF) in Isfahan, significant amounts of liquid waste stream is produced which is sent to evaporation ponds. In addition to environmental considerations, uranium recovery from existing pools is also economically feasible due to high concentration uranium in liquid waste. Several methods have been evolved over the years to remove dissolved uranium from uranium bearing solution. These methods are: chemical precipitation, liquid-liquid extraction, ion exchange and membrane processes. The purpose of this study is recovery of uranium from liquid waste of Isfahan UCF plant by using ion exchange method. Although this... 

    Michael Addition of Anthrone to Nitroolefines in Water and Oxidation of Alkenes Using a Supported Iron Oxide Nanocatalyst

    , M.Sc. Thesis Sharif University of Technology Karimi, Nafiseh (Author) ; Saeedi, Mohammad Reza (Supervisor) ; Ziyaei Halimehjani, Azim (Supervisor) ; Rajabi, Fatemeh (Co-Advisor)
    Abstract
    This projct includes the following sections: In the first section, Michael addition reaction of anthrone to nitroolefins is described in water without using any catalyst to prepare 9-(2-nitro-1-arylethyl)anthracene-10(9H)-ones. This method is green, efficient and gives high yields of products. The solvent effect is also investigated. In the second section, Considerable efforts have been directed in recent years towards the transition metal complex catalyzed oxidation of organic compounds such as olefins, sulfides, benzylics alcohols and phenolics. And due to the various advantages of supported heterogeneous catalysts and in our aim to develop a simple, more efficient and eco-friendly... 

    Biomolecules and Polymers Translocation Through Biological Single Nanopores and Current Characteristics Analysis

    , Ph.D. Dissertation Sharif University of Technology Haji Abdolvahab, Rouhollah (Author) ; Ejtehadi, Mohammad Reza (Supervisor) ; Mobasheri, Hamid (Co-Advisor)
    Abstract
    Translocation processes are ubiquitous in biology and biotechnology. Translocation of small molecules, e. g. sugar from maltoporin, metabolites through bacteria and macromolecules like proteins, from channels of cellular organelles and or RNA translocation though
    nuclear pores are of vital importance for cellular metabolism. One of the important applications of translocation processes in biotechnology is to sense translocating macromolecules or small molecules by analyzing the current passing through natural or synthesis channels. Improving our knowledge about this process can also help us to develop new methods for designing the appropriate drugs. In this thesis by studying and... 

    Deposition of Nanoporous Metallic Thin Films by Sputtering and Comparing with Electrochemical Method (Electroplating)

    , M.Sc. Thesis Sharif University of Technology Monjezi, Hossein (Author) ; Rashidian, Bijan (Supervisor)
    Abstract
    Porous thin films have becom very atractive due to their applications in many types of electronic and optical devices. There are several methods for deposition of such films. Chemical method for deposition of nanoporous thin films are relatively simple, but usually hard to control. In this thesis, chemical deposition of thin porous Molybden films is reported. In addition, an available sputtering system has been modified and, controlled porosity thin films were then deposited on glass and silicon substrates using GLAD method.These films have been characerized, and compared with chemically deposited porous thin films