Loading...
Search for: non-destructive
0.014 seconds
Total 38 records

    Optimization of SQUID NDE for Detection of the Defects in Metallic Samples

    , Ph.D. Dissertation Sharif University of Technology Sarreshtedari, Farrokh (Author) ; Fardmanesh, Mahdi (Supervisor) ; Kokabi, Hamid (Supervisor)
    Abstract
    The purpose of this thesis is the incorporation of RF SQUID ultra-sensitive magnetic sensors in an implemented SQUID NDE system and also the development of associated inverse solution algorithms for the detection of defects in metallic samples. The system is based on the induction of Eddy currents and the incorporation of SQUIDs for precise detection of the magnetic field anomalies related to the defects in the sample. One of the major parts of the system is the highly stable, multi-channel RF SQUID readout system which has been designed and implemented with novel features for this project. For the magnetic inverse analysis of our SQUID NDE measurements, new models have been presented for... 

    Design and Optimization of T1 Flip Flop in Bi-Directional RSFQ Logic

    , M.Sc. Thesis Sharif University of Technology Jabbari, Tahereh (Author) ; Fardmanesh, Mehdi (Supervisor)
    Abstract
    Superconducting Rapid Single Flux Quantum (RSFQ) Logic, is very fast (up to about THz) and ultra low power circuit technology and is the most recent and fastest superconducting logic family. So far one of the difficulties in RSFQ logic is associated to reading the circuit states in particular flip flops. In prevalent RSFQ logic using T1 Flip Flop gate instead of the T Flip Flop, the non-destructive reading of the registered bit is possible. Through this approach, it also has some limits in particular circuits. Another idea of resolving this issue, is considering the very new bi-directional RSFQ logic, which is based on alternative changing the bias current through the Josephson junctions.... 

    Laboratory and in situ investigation of the compressive strength of CFRD concrete

    , Article Construction and Building Materials ; Volume 242 , 2020 Vatani Oskouei, A ; Nazari, R ; Houshmand Khaneghahi, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    One of the most essential and costly stages in Concrete Face Rockfill Dams (CFRD) construction is to implement the concrete at the upstream face of the dam without joints. As the face concrete is considered as the most integral part to prevent water penetration in CFRDs, it's quality control is of paramount importance. One of the conventional approaches for quality control of the concrete which is used in CFRD is the compressive strength of laboratory samples. The comparison of laboratory and in situ measurements provides information about the accuracy of the obtained results. This research investigates the correlation of concrete compressive strength determined by using different methods in... 

    The effects of stabilizers on the thermal and the mechanical properties of rammed earth at various humidities and their environmental impacts

    , Article Construction and Building Materials ; Volume 200 , 2019 , Pages 616-629 ; 09500618 (ISSN) Toufigh, V ; Kianfar, E ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The overall behavior of rammed earth (RE) as a low embodied energy construction method can be enhanced by using stabilizers. Several studies have been performed on cement and lime stabilized RE. However, studies on other additives, especially the sustainable ones, are limited. In this research, the effect of stabilizers including cement, pozzolan, microsilica, fiberglass, guar gum and phase change material (PCM) was evaluated on the performance of RE mixtures. The mixtures were assessed by considering the durability, shrinkage, thermal conductivity, mechanical properties and their sensitivity to the humidity. Then, the correlations were determined between the mechanical properties and the... 

    The finite element simulation of lamb wave propagation in a cracked structure with coupled filed elements

    , Article Advanced Materials Research, 7 January 2012 through 8 January 2012 ; Volume 463-464 , January , 2012 , Pages 618-623 ; 10226680 (ISSN) ; 9783037853634 (ISBN) Tashi, S ; Abedian, A ; Khajehtourian, R ; Singapore Institute of Electronics (SIE); Science and Engineering Institute (SCIEI) ; Sharif University of Technology
    2012
    Abstract
    Crack detection by Piezoelectric Wafer Active Sensors (PWAS) is one of the emerging methods of Non-destructive Evaluation (NDE). These sensors can assess the health state of the structure in far filed through the analyzing the high frequency Lamb wave propagation. As PWAS is the essential part of this method, simulation and modeling of these sensors and their interaction with the host structure, strongly affect the accuracy of results. In this study, unlike the previous works, in which some certain areas of the host structure were considered as a sensor and actuator, the direct simulation of electro-mechanical interaction of the PWAS and the host structure is modeled among modeling the PWAS... 

    Assessment of plain and glass fiber-reinforced concrete under impact loading: a new approach via ultrasound evaluation

    , Article Journal of Nondestructive Evaluation ; Volume 38, Issue 4 , 2019 ; 01959298 (ISSN) Soleimanian, E ; Toufigh, V ; Sharif University of Technology
    Springer  2019
    Abstract
    Impact loading leads to micro-crack formation that can compromise the performance of the concrete. The purpose of this paper is to evaluate plain concrete and fiber-reinforced concrete specimens using ultrasound methods under impact loading. These specimens were prepared and subjected to impact loading. Ultrasound tests were performed at different stages of impact loading on each specimen. The loading continued until cracks on the surface of the specimens were observed. Investigations were performed for both plain concrete and fiber-reinforced concrete to establish a correlation between ultrasound response characteristics, and the damage caused by impact loading due to the energy of blows... 

    Analytical model for the extraction of flaw-induced current interactions for SQUID NDE

    , Article IEEE Transactions on Applied Superconductivity ; Volume 21, Issue 4 , 2011 , Pages 3442-3446 ; 10518223 (ISSN) Sarreshtedari, F ; Hosseini, M ; Razmkhah, S ; Mehrany, K ; Kokabi, H ; Schubert, J ; Banzet, M ; Krause, H. J ; Fardmanesh, M ; Sharif University of Technology
    Abstract
    Incorporating an analytical approach to simulate the interaction of a series of long cracks and the induced current of a double-D excitation coil, we have developed a model-based method to do precise detection of the positions of the cracks in a metallic structure by using eddy-current superconducting quantum interference device (SQUID) nondestructive evaluation (NDE) measurements. Conventionally, the structure of the defects is found by iteratively solving a numerical forward problem, which is usually based on finite-element, boundary-element, or volume-integral method. This, however, incurs a heavy numerical burden, as every time the forward problem is to be solved, a rigorous numerical... 

    FEM enhanced signal processing approach for pattern recognition in the SQUID based NDE system

    , Article Journal of Physics: Conference Series, 13 September 2009 through 17 September 2009 ; Volume 234, Issue PART 4 , 2010 ; 17426588 (ISSN) Sarreshtedari, F ; Jahed, N. M. S ; Hosseni, N ; Pourhashemi, A ; Banzet, M ; Schubert, J ; Fardmanesh, M ; Sharif University of Technology
    Abstract
    An efficient Non-Destructive Evaluation algorithm has been developed in order to extract the required information for pattern recognition of defects in the conductive samples. Using high-Tc gradiometer RF-SQUIDs in unshielded environments and incorporating an automated two dimensional non-magnetic scanning robot, samples with different intentional defects have been tested. We have used a developed noise cancellation approach for the improvement of the effectiveness of the used inverse-problem technique. In this approach we have used a well examined Finite Element Method (FEM) to apply a noise reduction filtering on the obtained raw magnetic image data before incorporating the signal... 

    An efficient finite-element approach for the modeling of planar double-D excitation coils and flaws in SQUID NDE systems

    , Article IEEE Transactions on Applied Superconductivity ; Volume 20, Issue 2 , 2010 , Pages 76-81 ; 10518223 (ISSN) Sarreshtedari, F ; Pourhashemi, A ; Asad, N ; Schubert, J ; Banzet, M ; Fardmanesh, M ; Sharif University of Technology
    2010
    Abstract
    Incorporating an efficient approach for the finite-element simulation of eddy current superconductive quantum interface device (SQUID) nondestructive evaluation (NDE) systems, an appropriate finite-element method (FEM) has been presented for simulating and analyzing such systems. We have introduced a new model for the planar double-D coils, which are used as the excitation source in eddy current SQUID NDE systems, and also another model for the description of the flaw effect on the induced current. We have also examined our simulation results with their associated measurements. Our system is based on a high-TC YBCO gradiometer RF-SQUID sensor with a flux noise level below 100 μΦ0 √Hz at 100... 

    Electromagnetic attenuation factor based nde approach for depth detection of hidden defects using HTS rf-SQUID

    , Article 27th Iranian Conference on Electrical Engineering, ICEE 2019, 30 April 2019 through 2 May 2019 ; 2019 , Pages 360-363 ; 9781728115085 (ISBN) Rostami, B ; Shanehsazzadeh, F ; Fardmanesh, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    We present a new approach for non-destructive evaluation (NDE) in homogeneous and isotropic metallic objects which contain defects at unknown depths based on single scan and multi frequency excitation. As known, there is an optimum frequency for each depth of defect. Finding the depth of an unknown defect requires us to find the optimal frequency. In conventional single frequency methods, the optimal frequency is obtained by applying a wide range of frequencies to the system separately and comparing the corresponding results in a time-consuming process. Conventional multi frequency inspections were introduced to obtain more information about test specimens. There are two ways to apply... 

    Flaw characterization in ultrasonic non-destructive testing method using exponential modeling

    , Article Conference Record - IEEE Instrumentation and Measurement Technology Conference ; 2013 , Pages 1676-1679 ; 10915281 (ISSN) ; 9781467346221 (ISBN) Ravanbod, H ; Karimi, F ; Amindavar, H ; Sharif University of Technology
    2013
    Abstract
    Determining the shape, area, volume, and direction of flaws using ultrasonic imaging of metallic pieces, is a method estimating the severity of their defects. Different methods are used to process ultrasound images. Among these methods are spectral analyses, statistical, mathematical and intelligent methods. Within each of these, there are some advantages as well as limitations. Prony algorithm, which has been used as a parametric method for extracting exponential components of a signal, has several applications in signal modeling, system identification and classification. In this paper, after simulating pieces of oil pipeline, digital Wavelet transform has been used to reduce the noise of... 

    Approximating the distribution of flaws in magnetic materials using the generalized inverse

    , Article 2011 IEEE International Conference on Imaging Systems and Techniques, IST 2011 - Proceedings, 17 May 2011 through 18 May 2011, Batu Ferringhi ; May , 2011 , Pages 137-141 ; 9781612848969 (ISBN) Ravanbod, H ; Abdollahi Jahdi, S ; Norouzi, E ; Sharif University of Technology
    2011
    Abstract
    Non-destructive identification of voids in ferromagnetic materials is of great importance for industrial applications. Magnetic flux leakage technique is used here to examine the defected structure. To this end, an inverse problem should be solved in order to infer the location and depth of internal flaws from the measured leaked magnetic signals. Currently generalized inverse method and singular value decomposition are used for solving such inverse problem. Considering the cracks separation has significant effect on the absolute value of magnetic flux leakage signals, we study different distributions of cracks. In this paper, the magnetic dipole model is proposed to reconstruct the extent... 

    A novel method for modeling the magnetizing yoke

    , Article Electromagnetics ; Volume 30, Issue 3 , 2010 , Pages 297-308 ; 02726343 (ISSN) Ravanbod, H ; Norouzi, E
    2010
    Abstract
    Magnetic flux leakage is the most widely used method for oil and gas pipeline non destructive testing. The saturation level of the sample under test has a significant effect on its efficiency; therefore, the magnetizing yoke requires an elaborate design. The finite element method is the conventional approach used for this purpose, but it is very time consuming. In this article, a neuro-fuzzy method is presented to model the behavior of the magnetizing yoke. Modeling a few different designs with the finite element method and using the results for training the neuro-fuzzy model eradicates the necessity of modeling a huge number of designs with the finite element method. The acquired... 

    Interaction of a plane progressive sound wave with anisotropic cylindrical shells

    , Article Composite Structures ; Vol. 116, issue. 1 , September–October , 2014 , pp. 747-760 ; ISSN: 02638223 Rajabi, M ; Behzad, M ; Sharif University of Technology
    Abstract
    An exact analysis based on the wave function expansion is carried out to study the scattering of a plane harmonic acoustic wave incident at an arbitrary angle upon an arbitrarily thick helically filament-wound (anisotropic) cylindrical shell submerged in and filled with compressible ideal fluids. Using the laminated approximation method, a modal state equation with variable coefficients is set up in terms of appropriate displacement and stress functions and their cylindrical harmonics to present an analytical solution based on the three-dimensional exact equations of anisotropic elasticity. Taylor's expansion theorem is then employed to obtain the solution to the modal state equation,... 

    Corrosion detection in pipes by piezoelectric sensors using Artificial Neural Network

    , Article Advanced Materials Research, 4 November 2011 through 6 November 2011 ; Volume 403-408 , November , 2012 , Pages 748-752 ; 10226680 (ISSN) ; 9783037853122 (ISBN) Rafezi, H ; Rahmani, B ; Sharif University of Technology
    2012
    Abstract
    Defect detection in pipes is an essential task specially for sensitive applications such as oil and gas industry where special cares are required. Corrosion is a common defect in pipes which has attracted attention of researchers. In present work a non-destructive methodology for pipe corrosion monitoring is introduced. Polymer of Vinylidene Fluoride (PVDF) Piezoelectric is used as the sensor to measure strain variations affected by internal corrosion. High sensitivity and low cost of piezoelectric materials made them a good candidate for precise industrial applications. Different corrosion conditions (i.e. corrosion location along pipe and corrosion depth) are modeled and sensors voltages... 

    Nondestructive nitrogen content estimation in tomato plant leaves by Vis-NIR hyperspectral imaging and regression data models

    , Article Applied Optics ; Volume 60, Issue 30 , 2021 , Pages 9560-9569 ; 1559128X (ISSN) Pourdarbani, R ; Sabzi, S ; Rohban, M. H ; García Mateos, G ; Arribas, J. I ; Sharif University of Technology
    The Optical Society  2021
    Abstract
    The present study aims to estimate nitrogen (N) content in tomato (Solanum lycopersicum L.) plant leaves using optimal hyperspectral imaging data by means of computational intelligence [artificial neural networks and the differential evolution algorithm (ANN-DE), partial least squares regression (PLSR), and convolutional neural network (CNN) regression] to detect potential plant stress to nutrients at early stages. First, pots containing control and treated tomato plants were prepared; three treatments (categories or classes) consisted in the application of an overdose of 30%, 60%, and 90% nitrogen fertilizer, called N-30%, N-60%, N-90%, respectively. Tomato plant leaves were then randomly... 

    Using metaheuristic algorithms to improve the estimation of acidity in Fuji apples using NIR spectroscopy

    , Article Ain Shams Engineering Journal ; Volume 13, Issue 6 , 2022 ; 20904479 (ISSN) Pourdarbani, R ; Sabzi, S ; Rohban, M. H ; García Mateos, G ; Paliwal, J ; Molina Martínez, J. M ; Sharif University of Technology
    Ain Shams University  2022
    Abstract
    This study focuses on the spectrochemical estimation of pH and titratable acidity (TA) of apples of Fuji variety at different stages of ripening. A novel approach is proposed for near-infrared (NIR) spectral analysis using hybrid machine learning methods that combine artificial neural networks (ANN) and metaheuristic algorithms. One hundred twenty samples were collected at three ripening stages and spectral data within two bands of NIR were extracted from each sample to predict the acidity properties. Alternatively, the 4 most effective wavelengths were also selected using a hybrid of ANN and the cultural algorithm. The experimental results prove that the models using spectral bands and the... 

    THz non-destructive testing for covered defects

    , Article 4th International Conference on Millimeter-Wave and Terahertz Technologies, MMWaTT 2016, 20 December 2016 through 22 December 2016 ; 2017 , Pages 45-47 ; 21570965 (ISSN); 9781509054145 (ISBN) Panahi, O ; Kheyrollahi Kouhanestani, M ; Yahyaei, B ; Mousavi, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    In this paper, a pulsed THz imaging system in normal geometry is presented experimentally and the effect of placing a pinhole in front of a covered sample on image quality has been investigated too. Also, the improvement of image quality by using ray transfer matrix is described theoretically. Finally, by using contour system the results are evaluated and the accuracy of THz imaging system is tested. © 2016 IEEE  

    An innovative inverse analysis based on the Bayesian inference for concrete material

    , Article Ultrasonics ; Volume 124 , 2022 ; 0041624X (ISSN) Nouri, A ; Toufigh, V ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Nondestructive tests and evaluations are robust techniques for inspecting different attributes of concrete configuration. However, most nondestructive techniques focused on an aspect of concrete configuration based on comparison to other samples. In this paper, an innovative inverse analysis technique was developed to inspect different attributes of concrete configuration simultaneously. The methodology was based on the scattering feature of the ultrasonic waves during propagation in heterogeneous media. The transition matrix method was employed to determine the scattered wavefield. This method considers the shape of objects, unlike most other numerical methods. Furthermore, a novel... 

    Numerical optimization and manufacturing of the impeller of a centrifugal compressor by variation of splitter blades

    , Article ASME Turbo Expo 2016, Turbomachinery Technical Conference and Exposition, 13 June 2016 through 17 June 2016 ; Volume 8 , 2016 ; 9780791849866 (ISBN) Moussavi Torshizi, S. A ; Hajilouy Benisi, A ; Durali, M ; International Gas Turbine Institute ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME) 
    Abstract
    Design and optimization of centrifugal compressors, based on main blades configuration of impeller have been vastly discussed in open literature, but less researches have addressed splitters. In this research, the impeller of a commercial turbocharger compressor is investigated. Here, profiles of main blades are not changed while the effect of changing the configuration of splitters is studied. An optimization study is performed to find the best configuration using genetic algorithm over a complete operating curve of the compressor. CFD codes with experimental support are used to predict the compressor performance. Quantumetric tests beside destructive analysis of two impellers are...