Loading...
Search for: phosphates
0.014 seconds
Total 113 records

    , M.Sc. Thesis Sharif University of Technology Hassan Beigee, Hamid Reza (Author) ; Ghorbani, Mohammad (Supervisor)
    Abstract
    Phosphating is one of the most procedures as a final surface treatment or pre-treatment (lubrication and Infrastructure color) is done on ferrous and nonferrous alloys. Phosphate coating on the wire drawing, increase speed of drwing, increase die life, increased resistance to abrasion caused by the friction reduction, reduced maintenance costs and improved surface appearance are combustible and conditions. The aim of this study was to evaluate the effects of variables such as temperature, pH bath, the coating bath components concentration on coating properties and optimize calcium zinc phosphate coating on steel wire, for better lubrication and decrease friction in the wire drawing process.... 

    Preparation and Characterization of a Lithium Ion Conducting Electrolyte

    , M.Sc. Thesis Sharif University of Technology Toofan, Samin (Author) ; Nemati, Ali (Supervisor)
    Abstract
    In recent years lithium-air batteries captured worldwide attention because of their high energy density. Solid state electrolytes is one of the main components of lithium-air batteries. Lithium almunium titanium phosphate(LATP) is a nasicon type ion conduction which may be of great potential as solid electrolyte. The object of this thesis was the preparation of LATP solid electrolyte which can be used in a lithium-air battery. To reach this goal LATP powder was synthesized using a solution-based method and an appropriate crystallization temperature was selected based on obtained results of X-ray diffraction analysis. In the next step solid electrolytes was prepared under different pressing... 

    Formation & Properties of Zn–Ca– Mn Tri – Cation’s Phosphate Coating on St37 Steels

    , M.Sc. Thesis Sharif University of Technology Rasouli, Hassanali (Author) ; Afshar, Abdollah (Supervisor) ; Ghorbani, Mohammad (Supervisor)
    Abstract
    Addition of heavy metal cations such as manganese and nickel in low zinc phosphating bath increases the corrosion resistance of coatings and provides more suitable substrates for painting (especially electrophoretic painting). In addition, due to accelerating property and low cost availability of heavy metal cations such as Mn, multi– cationic phosphating is cost effective. In the present study, chemical composition and operating parameters of zinc - calcium - manganese Tri- cationic phosphating solution were optimized. Then the effects of various parameters such as phosphating time, bath temperature and pH on properties of coating were investigated. According to the results, about 1 g/L was... 

    Hydroxyapaptite Coating on Zirconia Toughened Alumina Nanocomposite by Biomimetic Method

    , M.Sc. Thesis Sharif University of Technology Esfahani, Hamid (Author) ; Nemati, Ali (Supervisor) ; Salahi, Esmaeil (Co-Advisor)
    Abstract
    Zirconia toughened alumina (ZTA) Nanocomposites were prepared using nano sized Zirconia (ZrO2) powders doped with 3% mol of yttria (Y2O3) nanopowders and the sintering behavior at different temperature (1450 °C, 1550 °C and 1650 °C) were studied. The ZTA composite with different amount of partially stabilized Zirconia (PSZ)(5, 10, 15 and 20% mol) were prepared via axial pressing and then sintered to achieve maximum densification. After that phase changes of the samples were monitored. SEM was used for microstructural study and hardness and fracture toughness were determined by means of Vickers indentation. X-ray diffraction pattern showed that at constant composition, tetragonal zirconia... 

    Electrochemical and Microstructural Analysis of Aging Mechanism of 18650 LiFePO4/Graphite Li-ion Batteries under Different C-Rate and Temperature Conditions

    , M.Sc. Thesis Sharif University of Technology Sharifi, Hossein (Author) ; Asgari, Sirous (Supervisor)
    Abstract
    In this study, the aging of the LiFePO4/graphite cell was investigated in two different types of 18650 Li-ion batteries during cycling at various C-rates (0.5, 1, 2, 3, 4C) and high temperature under long-term cycling. An amount of 20% Capacity loss was considered as the end of the cycling. Batteries with a capacity of 1500 mAh after this capacity drop, experience 60, 120, 1502, and 2155 cycles, at the rates of 4, 3, 2, and 1C , and batteries with capacity of 1400 mAh was also 60, 360, 1100, 1000, and 805 cycles at a rate of 0.5C. Capacity decrease of the cell is in linear relationship with cycle number and the slope of the capacity-fading line increases with elevating current rate. Aging... 

    An Investigation on REEs' Cerium, Lanthanum, Neodymium Leaching from Phosphate Concentrate of Iron ore Waste in Hydrochloric Acid Environment and Study on Purification and Concentration of the Solution

    , M.Sc. Thesis Sharif University of Technology Sadrolfozalaei, Mohammad (Author) ; Youzbashizadeh, Hossein (Supervisor)
    Abstract
    Considering the demand for electronic and other products that rare earth elements are one of the necessary materials for their production, recovery of these elements plays an important roll today.The term “rare earth”, represents a group of 17 metalic elements with similar physical and chemical properties such as Sc,Y and lanthanides. Lanthanides are a group of elements with 57 to 71 atomic numbers and all of them except Pr, are present in earth crust.Some of these elements are available in phosphate concentrate(iron ore waste) of chadormalu in bafgh. Base on the analysis performed on apatite concatrate, it was represented that Ce,La and Nd elements are more than the others. So this research... 

    Lithium Recovery from Brine Sources of Iran by Precipitation Method

    , M.Sc. Thesis Sharif University of Technology Jandaghi, Mohammad Reaz (Author) ; Askari, Masoud (Supervisor)
    Abstract
    Lithium is one of the most commonly used metals in industry with a wide variety of applications including batteries, lubricating grease and pharmaceutical products. Demand for lithium is expected to rise with the increasing adoption of electric vehicles. Market reports have predicted that world lithium demand will increase by 2.5 times from 2010 to 2020. Therefore, there is a pressing need to develop new sources of lithium to support this anticipated increase in demand. Lithium can be extracted from salt brine and lithium containing minerals as lithium compounds.
    Salt brines are the most abundant lithium sources available in the world, comprising about 60% of all known lithium deposits.... 

    Controlled Release Delivery System for Antibiotic in Bone Cement

    , M.Sc. Thesis Sharif University of Technology Beyki Sarve ol’ya, Mohammad Saeed (Author) ; Abd Khodaei, Mohammad Jafar (Supervisor)
    Abstract
    The incidence of skeletal diseases such as osteoarthritis and its progression and the need to use knee replacement implants have significant effects on the quality of life. With the improvement of living conditions and the prolongation of the average life expectancy of the society and the aging of a large part of the society, the concern about the increase in the incidence of skeletal diseases and the need to use alternative implants increases. On the other hand, many conditions such as osteoporosis and accidents lead to fractures and cavities in the bones. Bone cements are one of the most widely used materials in orthopedic and spinal surgeries.The aim of this study was to construct a... 

    Study and Preparation of the Modified Nanostructure Carbon Electrode for Capacitive Deionization (CDI) Process

    , Ph.D. Dissertation Sharif University of Technology Talebi, Majid (Author) ; Ahadian, Mohammad Mahdi (Supervisor) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    Nowadays capacitive deionization (CDI) has attracted a lot of attention for water treatment. CDI is an emerging water treatment technology that uses electrophoretic driving forces for desalination of water. During the CDI process, ions are adsorbed onto the surface of electrodes by applying a low voltage electric field (DC<2V). In addition, the regeneration of the electrodes contains desorption of the electrosorbed ions from the surface of the electrodes to the water in the absence of the applied electric field. In the mechanism of CDI, separation and accumulation of ions in the electric field are the main processes and no additional chemicals are required in this technology. Therein,... 

    Numerical simulation of high voltage electric pulse comminution of phosphate ore

    , Article International Journal of Mining Science and Technology ; Volume 25, Issue 3 , 2015 , Pages 473-478 ; ISSN: 20952686 Razavian, S. M ; Rezai, B ; Irannajad, M ; Ravanji, M. H ; Sharif University of Technology
    Abstract
    Numerical simulation of the electrical field distribution helps in-depth understanding of the mechanisms behind the responses and the benefits of the high voltage pulse comminution. The COMSOL Multiphysics package was used to numerically simulate the effect of ore compositions in this study. Regarding phosphate ore particles shape and composition, the effects of mineral composition, particle size, particle shape and electrodes distance were investigated on the electrical field intensity and distribution. The results show that the induced electrical field is significantly dependent on the electrical properties of minerals, the feed particle size and the location of conductive minerals in... 

    Evaluation of ascorbic acid-loaded calcium phosphate bone cements: Physical properties and in vitro release behavior

    , Article Ceramics International ; Vol. 40, issue. 3 , April , 2014 , pp. 3961-3968 ; ISSN: 02728842 Hemmati, K ; Hesaraki, S ; Nemati, A ; Sharif University of Technology
    Abstract
    In this study, different concentrations of ascorbic acid (50, 100 and 200 μg/mL) were added to the liquid phase of a calcium phosphate cement (CPC). The cements were immersed in simulated body fluid (SBF) for different intervals and physical, physicochemical and mechanical properties of them were evaluated. The release of added ascorbic acid from CPCs into the SBF solution was also studied. From the results, both setting time and injectability of CPC decreased by adding ascorbic acid, however the compressive strength was sharply increased before soaking in SBF solution. But, the compressive strength values of all cements (with or without ascorbic acid) soaked in SBF solution for more than 7... 

    Structure and corrosion behavior of oxide layer with Zr compounds on AZ31 Mg alloy processed by two-step plasma electrolytic oxidation

    , Article Surface and Coatings Technology ; Vol. 238 , 2014 , pp. 75-79 ; ISSN: 02578972 Einkhah, F ; Lee, K. M ; Sani, M. A. F ; Yoo, B ; Shin, D. H ; Sharif University of Technology
    Abstract
    The formation of the oxide layer with Zr compounds on AZ31 Mg alloy processed by two-step plasma electrolytic oxidation (PEO) has been investigated. After the PEO process first in an alkaline phosphate electrolyte and second in an acid electrolyte containing K2ZrF6, the microstructure, chemical composition, and phase composition of the oxide layers were analyzed via SEM, EDS, and XRD, respectively. The electrochemical reaction and the high temperature caused by the plasma discharges in the electrolyte were the main factors leading to the fabrication of an oxide layer containing Zr compounds on AZ31 Mg alloy. The micro-pores were filled with ZrO2 formed during the PEO process. The results of... 

    A theoretical and experimental investigation of wastewater treatment for a polyethylene terephthalate production unit

    , Article Chemical Engineering Transactions ; Vol. 39, issue. Special Issue , 2014 , p. 751-756 ; 22839216 Vafajoo, L ; Mohammadpour, A ; Khorasheh, F ; Sharif University of Technology
    Abstract
    In this research, mathematical modelling of an anaerobic hybrid bioreactor for effluent treatment of a Poly-Ethylene Terephthalate (PET) unit in a petrochemical complex was performed. The developed model included a combination of a biofilm model for describing the substrate kinetics; a fluidized bed model for determination of species profiles along the reactor length and a bioreactor model for particle distribution inside the reactor. The reactions performed in the bioreactor included; i) the polymers hydrolysis; ii) fermentation of the resulting monomers; iii) the volatile fatty acids fermentation to Acetate and Hydrogen and iv) the Methane formation as the final product. The reactor was... 

    Modified Gadonanotubes as a promising novel MRI contrasting agent

    , Article DARU, Journal of Pharmaceutical Sciences ; Volume 21, Issue 1 , 2013 ; 15608115 (ISSN) Jahanbakhsh, R ; Atyabi, F ; Shanehsazzadeh, S ; Sobhani, Z ; Adeli, M ; Dinarvand, R ; Sharif University of Technology
    2013
    Abstract
    Background and purpose of the study. Carbon nanotubes (CNTs) are emerging drug and imaging carrier systems which show significant versatility. One of the extraordinary characteristics of CNTs as Magnetic Resonance Imaging (MRI) contrasting agent is the extremely large proton relaxivities when loaded with gadolinium ion (Gdn 3+) clusters. Methods. In this study equated Gdn 3+ clusters were loaded in the sidewall defects of oxidized multiwalled (MW) CNTs. The amount of loaded gadolinium ion into the MWCNTs was quantified by inductively coupled plasma (ICP) method. To improve water solubility and biocompatibility of the system, the complexes were functionalized using diamine-terminated... 

    Hydroxyapatite nanocomposites: Synthesis, sintering and mechanical properties

    , Article Ceramics International ; Volume 39, Issue 3 , April , 2013 , Pages 2197-2206 ; 02728842 (ISSN) Aminzare, M ; Eskandari, A ; Baroonian, M. H ; Berenov, A ; Razavi Hesabi, Z ; Taheri, M ; Sadrnezhaad, S. K ; Sharif University of Technology
    2013
    Abstract
    Two different hydroxyapatite based composites reinforced by oxide ceramic (20 wt%) nano crystals were synthesized by high-energy ball milling and sintered by pressure less technique. Alumina and titania nanoparticles as secondary phases improved densification and mechanical behavior of apatite and postponed its decomposition to the tricalcium phosphate (TCP) phases at elevated temperatures. Increasing the relative density of apatite using nano reinforcements leads to enhance the bending strength by more than 40% and 27% (as compared to the pure HA) and increase the hardness from 2.52 to 5.12 (Al2O3 composite) and 4.21 (TiO2 addition) GPa, respectively. Transmission electron microscopy (TEM),... 

    Synthesis and characterisation of β-tricalcium phosphate coating on zirconia toughened alumina by biomimetic method

    , Article Advances in Applied Ceramics ; Volume 112, Issue 3 , 2013 , Pages 140-145 ; 17436753 (ISSN) Esfahani, H ; Nemati, A ; Salahi, E ; Sharif University of Technology
    2013
    Abstract
    The present work studied bioactive coatings on the surface of ceramic biomaterials. Zirconia toughened alumina (ZTA) composites containing 15 mol.-%. Partially stabilised zirconia was prepared after 1 h sintering at 1550°C. Apatite layers were then coated onto the surfaces of composites by the biomimetic method using 1·5-2 multiply concentrations of simulated body fluid (SBF). Before treatment in SBFs, a sodium silicate layer was employed as nucleating agent to induce the formation of a calcium phosphate layer. The effect of immersion time on the morphology of the precipitate was monitored with a scanning electron microscope. X dot maps revealed that there is a relationship between... 

    Crystallization of hydroxyapatite during hydrothermal treatment on amorphous calcium phosphate layer coated by PEO technique

    , Article Ceramics International ; Volume 39, Issue 2 , 2013 , Pages 1793-1798 ; 02728842 (ISSN) Faghihi Sani, M. A ; Arbabi, A ; Mehdinezhad Roshan, A ; Sharif University of Technology
    2013
    Abstract
    Surface modification of titanium implants is recently considered by several researchers. In this study, PEO was performed over commercially Ti-6Al-4V alloy pellets in an aqueous electrolyte containing calcium acetate (C.A.) and calcium glycerphosphate (Ca-GP) with a Ca/P molar ratio of 6.8, and applying current density of 0.212 A/cm2, frequency of 100 Hz and duty ratio of 60% for 4 min. In the next step, hydrothermal treatments were carried out for various durations and at different temperatures inside an autoclave chamber containing a NaOH solution with pH of 11.5. XRD and SEM results confirmed formation of needle-shaped HAp after all hydrothermal conditions. Maximum intensity of HAp peaks... 

    Separation of rhenium and molybdenum from molybdenite leach liquor by the solvent extraction method

    , Article Minerals and Metallurgical Processing ; Volume 30, Issue 1 , February , 2013 , Pages 53-58 ; 07479182 (ISSN) Khoshnevisan, A ; Yoozbashizadeh, H ; Mohammadi, M ; Abazarpoor, A ; Maarefvand, M ; Sharif University of Technology
    2013
    Abstract
    Molybdenum resources around the world are mainly associated with porphyry copper ores. Molybdenite (MoS2) is the main Mo mineral that has rhenium in its crystal lattice. This paper investigates the recovery of rhenium and molybdenum from a molybdenite concentrate using a hydrometallurgical treatment method. The molybdenite concentrate is leached with nitric acid and subjected to solvent extraction to recover and separate rhenium and molybdenum from the leached liquor. The effects of pH and the chemicals' concentration on extraction characteristics of Mo and Re are investigated to define the best condition for selective extraction of these metals. The tested leached liquor contained of 8.2... 

    Evaluating the effect of ultrasmall superparamagnetic iron oxide nanoparticles for a long-term magnetic cell labeling

    , Article Journal of Medical Physics ; Volume 38, Issue 1 , 2013 , Pages 34-40 ; 09716203 (ISSN) Shanehsazzadeh, S ; Oghabian, M. A ; Allen, B. J ; Amanlou, M ; Masoudi, A ; Daha, F. J ; Sharif University of Technology
    2013
    Abstract
    In order to evaluate the long-term viability, the iron content stability, and the labeling efficiency of mammalian cells using magnetic cell labeling; dextran-coated ultrasmall superparamagnetic iron oxide (USPIOs) nanoparticles with plain surfaces having a hydrodynamic size of 25 nm were used for this study. Tests were carried out in four groups each containing 5 flasks of 5.5 × 10 6 AD-293 embryonic kidney cells. The cell lines were incubated for 24 h using four different iron concentrations with and without protamine sulfate (Pro), washed with phosphate-buffered saline (PBS) and centrifuged three times to remove the unbounded USPIOs. Cell viability was also verified using USPIOs. There... 

    Ionic liquid/graphene oxide as a nanocomposite for improving the direct electrochemistry and electrocatalytic activity of glucose oxidase

    , Article Journal of Solid State Electrochemistry ; Volume 17, Issue 1 , January , 2013 , Pages 183-189 ; 14328488 (ISSN) Tasviri, M ; Ghasemi, S ; Ghourchian, H ; Gholami, M. R ; Sharif University of Technology
    2013
    Abstract
    By combination of 1-ethyl-3-methyl immidazolium ethyl sulfate as a typical room temperature ionic liquid (IL) and graphene oxide (GO) nanosheets, a nanocomposite was introduced for improving the direct electrochemistry and electrocatalytic activity of glucose oxidase (GOx). The enzyme on the IL-GO-modified glassy carbon electrode exhibited a quasireversible cyclic voltammogram corresponding to the flavine adenine dinucleotide/FADH2 redox prosthetic group of GOx. At the scan rate of 100 mV s-1, the enzyme showed a peak-to-peak potential separation of 82 mV and the formal potential of -463 mV (vs Ag/AgCl in 0.1 M phosphate buffer solution, pH 7.0). The kinetic parameters of the charge transfer...