Loading...
Search for: physical-properties
0.013 seconds
Total 52 records

    Investigation of Effect of Hot rolling Parameters on Mechanical and Physical Properties of a Fe-Ni-Co Alloy

    , M.Sc. Thesis Sharif University of Technology Yazdani, Mohammad (Author) ; Karimi Taheri, Ali (Supervisor) ; abbasi, mehdi (Supervisor)
    Abstract
    Fe-29Ni-17Co alloy with commercial name “Kovar” is an alloy with low expansion coefficient. The main specification of this alloy is to maintain this property at the high temperatures that is used in sealing of glass-metal. Achieving to desirable physical properties associated with suitable mechanical properties is the purpose of related industries. However the effect of cold work and heat treatment was studied on the physical properties of this alloy, there is no report about the effect of the hot work. Thus, in this investigation, the effect of the hot work on the physical and mechanical properties of Kovar was studied. At first, slabs of Kovar alloy were cast and remelted. Then,... 

    Surface Modification of Nanosilica with Glycidoxypropyltrimethoxysilane and Investigating its Effect on the Physical and Mechanical Properties of Epoxy Resin

    , M.Sc. Thesis Sharif University of Technology Poorkazem, Kianoosh (Author) ; Mahmoudi Hashemi, Mohammad (Supervisor) ; Bastani, Saeed (Supervisor)
    Abstract
    In the first stage of this research, different amounts of glycidoxypropyltrimethoxysilane (GPS) were grafted as a coupling agent on the surface of nanosilica particles (NS). Surface characterization was done by Particle Size Analyzer and Thermal Gravimetric Analyzer (TGA) and that way, samples were distinguished from each other. More comparisons were taken by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). Then the different amounts of modified NS were added into the matrix of an epoxy resin and the physical and mechanical properties of samples were tested with Abrasion Resistance test, Tensile Strength test, Thermal Mechanical Analysis (TMA),... 

    Investigation of the Effect of Additive Manufacturing Process Parameters on the Geometry of Components Made of Inconel 625 by Direct Metal Deposition

    , M.Sc. Thesis Sharif University of Technology Nankali, Mobin (Author) ; Akbary, Javad (Supervisor) ; Moradi, Mahmoud (Supervisor)
    Abstract
    Additive manufacturing technology (AM) is one of the new methods of rapid prototyping. Experts claim that using this process can produce a prototype of the product with any complex geometry in the shortest possible time. Among the methods of metal additive fabrication, the direct metal layering method with the powder coaxial nozzle has different capabilities and has received much attention by researchers. In this research, we intend to find a relationship between device parameters and the geometry of samples made by direct metal layer method. According to the research, many parameters affect the quality of the samples made by this method, the most effective of which are the three parameters... 

    Study of Physical Properties of Three Dimensional Graphene-Based Structures for Sensing Application

    , Ph.D. Dissertation Sharif University of Technology Mirmotallebi, Mona (Author) ; Iraji zad, Azam (Supervisor) ; Jafari, Akbar (Co-Supervisor)
    Abstract
    In this thesis, physical properties and gas sensing application of three-dimensional graphene-based structures are studied. The three-dimensional structures of reduced graphene oxide and relative hybrids were synthesized through reducing graphene oxide aqueous solution. The arrangement of two-dimensional graphene layers in three-dimensional architectures has some advantages such as high surface area, hence increasing available adsorption sites. These properties result in changing electrical parameters of the structure, such as electrical impedance and phase angle in the presence of different mediums and alteration of temperature and pressure. Various characterization techniques like atomic... 

    Characterization of Morphology, Rheology and Mechanical Properties of PA-PTFE Composites

    , M.Sc. Thesis Sharif University of Technology Gholamalipour, Soheila (Author) ; Shojaei, Akbar (Supervisor)
    Abstract
    polyamides have found great attractions in wide variety of applications due to their desirable mechanical and tribological properties and appropriate processability. Pure polymers are not suitable for this kind of application due to their low mechanical strength. High strength materials are needed for abrasive applications. Polytetrafluoroethylene (PTFE) is one of the most popular materials for abrasive applications. In this study the effect of PTFE and surface modification on PA/PTFE composite properties is investigated. duo to modification of PTFE powder, PTFE is exposed to sodium naphtalenide (Na/naphtha) etchant so as to deflurinate the surface for obtaining carbonyl, carboxyl and... 

    A Novel Approach in DNA Sequencing Based on Physical Differences of Nucleotides

    , M.Sc. Thesis Sharif University of Technology Ebadi Jalal, Farhad (Author) ; Nejat Pishkenari, Hossein (Supervisor) ; Meghdari, Ali (Supervisor) ; Vossoughi, Gholamreza (Supervisor)
    Abstract
    With the continued improvement of sequencing technologies, the prospect of genome-based medicine is now at the forefront of scientific research. To realize this potential, however, a revolutionary sequencing method is needed for the cost-effective and rapid interrogation of individual genomes. Generally there are key factors in the definition and evalution of sequencing methods: 1-read length, 2-throughput, 3-read accuracy, 4-read depth, and 5-cost per base. The purpose of developing new sequencing methods is making better at least one of these factors. In order to reach the goal of rapid and low-cost sequencing method, one cannot rely only on current techniques. Improvements of current... 

    Manufacture & Design of a Programmable Micro Syringe for Injecting of Biodegradable Photo Polymers

    , M.Sc. Thesis Sharif University of Technology Sheydaeian, Esmat (Author) ; Durali, Mohammad (Supervisor) ; Toyserkani, Ehsan (Co-Advisor)
    Abstract
    The micro-scale channel creation in Osteochondral scaffolds is a prominent issue in tissue engineering. In this project we tried to identify the relevant parameters to obtain the method for injecting a biodegradable photo polymer to achieve a micro channel by predictable size.Due to inadequate accuracy in measuring the properties of the non –Newtonian working fluid, it was decided to use the Newtonian fluid equations in this study. The relevant equations for injecting the liquid under constant pressure were extracted. The modeling and design of micro syringe system was then completed. Using the made set up experiment to measure the fluid viscosity were performed.The next step was the... 

    Russellian Monism

    , M.Sc. Thesis Sharif University of Technology Shahinnia, Niloofar (Author) ; Azadegan, Ebrahim (Supervisor)
    Abstract
    The problem of consciousness and its place in nature is the central issue in current theorizing about the mind and it also has close relationship with mind –body problem . As if we can prove consciousness and its unique properties then we can use it to reject physicalism but we were faced with other problems such as causal relations. There are different explanations about the nature of consciousness with the world but most of them place in dualism/ physicalim twofold. Russelian monism have recently argued, this view retains the strengths of traditional versions of dualism and materialism while avoiding their weakness. And In this thesis we have studied the theory and then discuss the... 

    Experimental and CFD Study of Physical Properties Effect on Hydrodynamic and Mass Transfer Coefficient of Single Drops

    , M.Sc. Thesis Sharif University of Technology Davari Moghaddam, Abbas (Author) ; Bastani, Daruoosh (Supervisor)
    Abstract
    In present study, it is tried to investigate the effect of physical properties on hydrodynamic and overall mass transfer coefficient of single drops using different experiments and then simulation of drop motion with OpenFOAM software version 1.7.1. the systems were choosen are toluene/acetone/water and n-butanol/succinic acid/water which their interfacial tensions are 36 and 1.6 mN/m respectively. Various type of nozzles have been used for produce of 1.5, 2, 3 and 4 millimeter drops. The results show that in absence of solute component, the rising velocity of toluene drops in each size is higher than rising velocity of butanol drops inside the water between 25 to 75 percent. But with... 

    Combined influences of viscous dissipation, non-uniform Joule heating and variable thermophysical properties on convective heat transfer in microtubes

    , Article International Journal of Heat and Mass Transfer ; Volume 55, Issue 4 , January , 2012 , Pages 762-772 ; 00179310 (ISSN) Yavari, H ; Sadeghi, A ; Saidi, M. H ; Chakraborty, S ; Sharif University of Technology
    Abstract
    This study presents a comprehensive investigation on hydrodynamic and thermal transport properties of mixed electroosmotically and pressure driven flow in microtubes. Particular emphasis is given to investigating the combined consequences of viscous dissipation, non-uniform Joule heating, and variable thermophysical properties. Analytical solutions are obtained using the Debye-Hückel linearization and constant fluid properties assumption, while a numerical solution is presented for variable fluid properties and non-uniform distribution of Joule heating. The results indicate that, viscous heating effect is pronounced significantly when a favorable pressure gradient exists and cannot be... 

    Physical properties of sputtered amorphous carbon coating

    , Article Journal of Alloys and Compounds ; Volume 513 , 2012 , Pages 135-138 ; 09258388 (ISSN) Yari, M ; Larijani, M. M ; Afshar, A ; Eshghabadi, M ; Shokouhy, A ; Sharif University of Technology
    Abstract
    In this study the effect of deposition temperature and thickness on the physical properties of carbon films deposited by magnetron sputtering PVD was investigated. The results of Raman spectra and grazing incidence XRD (GIXRD) patterns show that the graphitization increases by increasing the deposition temperature. There is a change in deposition mechanism at 400 °C from amorphous carbon deposition to nano-structured graphite deposition. Also by increasing substrate temperature the electrical resistance of carbon films reduces significantly up to 300 °C and then remains largely constant. High intrinsic compressive stress in low temperature deposited carbon films causes cracks and... 

    An analytical study on laser forming process of sheet metals, using new elasto-plastic temperature dependent material model

    , Article Advanced Materials Research ; Volume 622 , 2013 , Pages 569-574 ; 10226680 (ISSN) ; 9783037855638 (ISBN) Torabnia, S ; Banazadeh, A ; Sharif University of Technology
    2013
    Abstract
    The laser forming process is one of the last technologies on forming of sheet metals with laser beam heat distribution. In this process laser beam moves across the top surface of the sheet metal and the heated zone expands and causes a great moment that deforms the sheet metal. Subsequently, the heated zone gets cooled and provides a reverse strain and moment. The final bending angle is a combination of two phases. Due to the complexity of the process, it is studied with different approaches; FEM analysis and analytical as well as empirical methods. The laser forming is a sensible process regarding the material properties. Also, because of the temperature change during the process, it is... 

    Modeling and experimental investigation of bubble formation in shear-thinning liquids

    , Article Journal of Fluids Engineering, Transactions of the ASME ; Volume 139, Issue 7 , 2017 ; 00982202 (ISSN) Taghi Esfidani, M ; Reza Oshaghi, M ; Afshin, H ; Firoozabadi, B ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2017
    Abstract
    This investigation presents both theoretical and experimental studies on the size of a growing bubble in power-law non-Newtonian liquids. At first, some previous works on the prediction of bubble size in Newtonian liquids have been extended by considering the balance of forces acting on the bubble at the moment of separation. Predicted bubble sizes were validated against the experimental results for a wide range of operating conditions, including different gas flow rates and needle diameters as well as a wide range of physical properties of the Newtonian liquids. Furthermore, in order to determine the size of the bubbles formed in power-law non-Newtonian liquids with a similar analysis, the... 

    The physical and mechanical properties of Cu/Al2O3 composite synthesized by internal oxidation

    , Article Materials Science and Technology Conference and Exhibition 2009, MS and T'09, 25 October 2009 through 29 October 2009, Pittsburgh, PA ; Volume 3 , 2009 , Pages 1806-1815 ; 9781615676361 (ISBN) Soleimanpour, A. M ; Abachi, P ; Alimardani, N ; Motamen, A ; Sharif University of Technology
    Abstract
    The internal Oxidation introduces a practical method for producing copper matrix composites reinforced by alumina particles. The mechanical and physical properties of alumina reinforced copper composites and alloy specimens were investigated. This experiment involves casting of Cu-Al alloys with 0.37, 1, 2 and 3 weight percent of aluminium in non-oxidizing atmosphere with pure oxygen free copper. The composite specimens produced after internal oxidation process at 950°C for 10 hours in sealed alumina crucible. The microstructures of composite specimens were studied after internal oxidation using SEM and AFM. The hardness and electrical resistivity tests were measured. The wear properties of... 

    Hole transport material based on modified N-annulated perylene for efficient and stable perovskite solar cells

    , Article Solar Energy ; Volume 194 , 2019 , Pages 279-285 ; 0038092X (ISSN) Sheibani, E ; Amini, M ; Heydari, M ; Ahangar, H ; Keshavarzi, R ; Zhang, J ; Mirkhani, V ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    N-annulated perylene based materials show outstanding and tunable optical and physical properties, making them suitable to be charge transport materials for optoelectronic applications. However, this type of materials has so far not been well studied in solar cells. Here, we develop a new hole transport material (HTM), namely S5, based on perylene building block terms, for organic-inorganic hybrid perovskite solar cells (PSCs). We have systematically studied the influences of the film thickness of S5 on their photovoltaic performance, and a low concentration of S5 with a thinner HTM film is favorable for obtaining higher solar cell efficiency. S5 shows excellent energy alignment with... 

    The effect of the physical properties of the substrate on the kinetics of cell adhesion and crawling studied by an axisymmetric diffusion-energy balance coupled model

    , Article Soft Matter ; Volume 11, Issue 18 , Mar , 2015 , Pages 3693-3705 ; 1744683X (ISSN) Samadi Dooki, A ; Shodja, H. M ; Malekmotiei, L ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    In this paper an analytical approach to study the effect of the substrate physical properties on the kinetics of adhesion and motility behavior of cells is presented. Cell adhesion is mediated by the binding of cell wall receptors and substrate's complementary ligands, and tight adhesion is accomplished by the recruitment of the cell wall binders to the adhesion zone. The binders' movement is modeled as their axisymmetric diffusion in the fluid-like cell membrane. In order to preserve the thermodynamic consistency, the energy balance for the cell-substrate interaction is imposed on the diffusion equation. Solving the axisymmetric diffusion-energy balance coupled equations, it turns out that... 

    Numerical simulation of turbulent heat transfer on a rotating disk with an impinging jet

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010 ; Volume 2 , 2010 , Pages 627-631 ; 9780791849163 (ISBN) Saidi, M. H ; Karrabi, H ; Avval, H. B ; Asgarshamsi, A ; Sharif University of Technology
    Abstract
    A numerical study has been carried out to investigate the fluid flow structure and convective heat transfer due to a circular jet impinging on a rotating disk. The temperature distribution and convection heat transfer coefficient on the disk are calculated. Flow is considered to be steady, incompressible and turbulent. k-e RNG model is used to model the turbulent flow. Two new criteria are introduced and used to evaluate the performance of cooling process which are maximum temperature difference on the disk and the average temperature of the disk. The first parameter shows the uniformity of temperature distribution in the disk and the second shows the effect of both thermo physical... 

    Comparison between the artificial neural network system and SAFT equation in obtaining vapor pressure and liquid density of pure alcohols

    , Article Expert Systems with Applications ; Volume 38, Issue 3 , 2011 , Pages 1738-1747 ; 09574174 (ISSN) Rohani, A. A ; Pazuki, G ; Najafabadi, H. A ; Seyfi, S ; Vossoughi, M ; Sharif University of Technology
    Abstract
    Vapor pressure and liquid density of 20 pure alcohols were correlated using an artificial neural network (ANN) system and statistical associating fluid theory (SAFT) equation of state. The SAFT equation has five adjustable parameters as temperature-independent segment diameter, square-well energy, number of segment per chain, association energy and association volume. These parameters can be obtained by a non-linear regression method using the experimental vapor pressure and liquid density data. In continue, the vapor pressure and liquid densities of pure alcohols were estimated by using an artificial neural network (ANN) system. In the neural network system, it is assumed that thermodynamic... 

    Sandblasting improves the performance of electrodes of miniature electrical impedance tomography via double layer capacitance

    , Article Heliyon ; Volume 6, Issue 4 , 2020 Rezanejad Gatabi, Z ; Mohammadpour, R ; Gatabi, J. R ; Mirhoseini, M ; Ahmadi, M ; Sasanpour, P ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Effect of sandblasting of the copper electrode structures before deposition of gold thin film for micro electrical impedance tomography (EIT) system has been studied experimentally. The comparison has been performed on the unmodified copper electrodes and the sandblasted electrodes before deposition of gold layer, using structural analysis while their performance in EIT system has been measured and analyzed. The results of scanning electron microscopy and atomic force microscopy show that the sandblasting of the electrodes results in the deposition of gold film with smaller grain size and uniformly, comparing to the unmodified structure. The measurement of impedance shows that the... 

    2D MXene nanocomposites: electrochemical and biomedical applications

    , Article Environmental Science: Nano ; Volume 9, Issue 11 , 2022 , Pages 4038-4068 ; 20518153 (ISSN) Ramezani Farani, M ; Nourmohammadi Khiarak, B ; Tao, R ; Wang, Z ; Ahmadi, S ; Hassanpour, M ; Rabiee, M ; Saeb, M. R ; Lima, E. C ; Rabiee, N ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    In recent years, key questions about the interaction of 2D MXene nanomaterials in electrochemical and biomedical applications have been raised. Most research has focused on clarifying the exclusive properties of the materials; however, only limited reports have described the biomedical applications of 2D nanomaterials. 2D MXenes are monolayer atomic nanosheets resulting from MAX phase ceramics. The hydrophilic properties, metallic conductivity, stability, and exclusive physiochemical performances make them promising materials for electrochemical and biomedical applications, including CO2 reduction, H2 evolution, energy conversion and storage, supercapacitors, stimuli-responsive drug delivery...