Loading...
Search for: pipe
0.018 seconds
Total 287 records

    Role of the nucleating agent masterbatch carrier resin in the nonisothermal crystallization kinetics of polypropylene

    , Article Polymer Journal ; Volume 54, Issue 9 , 2022 , Pages 1127-1132 ; 00323896 (ISSN) Shokrollahi, M ; Marouf, B. T ; Bagheri, R ; Sharif University of Technology
    Springer Nature  2022
    Abstract
    The effect of the nucleating agent masterbatch carrier resin on the nonisothermal crystallization of a pipe-grade polypropylene block copolymer was investigated at three different cooling rates using differential scanning calorimetry (DSC). Bis(3,4-dimethylibenzylidene) sorbitol (DMDBS), a well-known, third-generation sorbitol derivative, was used as a nucleating agent in this study. Crystallization kinetic parameters obtained from DSC cooling curves showed that incorporation of a nucleating agent by means of a masterbatch increased the crystallization rate by approximately two times compared to that of the sample with the same concentration of nucleating agent without the use of a... 

    On the thermal performance enhancement of spiral-coil energy piles with a thermal recovery system

    , Article Energy and Buildings ; Volume 269 , 2022 ; 03787788 (ISSN) Nazmabadi, R ; Asgari, B ; Hakkaki Fard, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The pile foundation designed to ensure building stability when equipped with heat exchanger pipes to harvest geothermal energy is called an energy pile. Ground Source Heat Pump (GSHP) systems combined with energy piles have been used and developed as sustainable and efficient HVAC systems. Energy piles suffer from cold or heat accumulation in and around the pile, degrading their long-term performance. The current study seeks to alleviate this problem by proposing a thermal recovery system. The proposed system circulates ambient air in the pile foundation to extract the accumulated heat. A three-dimensional transient computational fluid dynamics model of the GSHP system coupled with the... 

    Investigating performance of a new design of forced convection solar dryer

    , Article Sustainable Energy Technologies and Assessments ; Volume 50 , 2022 ; 22131388 (ISSN) Rezaei, M ; Sefid, M ; Almutairi, K ; Mostafaeipour, A ; Ao, H. X ; Hosseini Dehshiri, S. J ; Hosseini Dehshiri, S. S ; Chowdhury, S ; Techato, K ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Drying is a common practice for delaying deterioration, preserving quality, and easier prolonged storage of agricultural products. According to the climatic and geographical conditions of Arsanjan County, Fars, Iran. So far, many studies have been conducted on the design and use of various barriers on absorber plates with the aim of increasing heat exchange and subsequently increasing the efficiency of air heaters and solar dryers. However, the effect of using the metal of the sewing machine bobbin on the performance of these dryers has not been studied yet. Therefore, in this study, for the first time, this metal and also pipes containing PCM (phase change material) were used as a barrier... 

    Investigation on dynamic stability and aeroelastic characteristics of composite curved pipes with any yawed angle

    , Article Composite Structures ; Volume 284 , 2022 ; 02638223 (ISSN) Chen, F ; Chen, J ; Duan, R ; Habibi, M ; Khadimallah, M. A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    For the first time, in the current work, a dynamic stability analysis of a tilted curved pipe in a supersonic airflow under thermal loading is presented. The heat-transfer continuum problem is used for simulating the thermal environment conditions. The tilted pipe is reinforced by carbon nanotube agglomerations (CNTAs). For simulating the displacement fields of the current structure, Quasi-2D refined high order shear deformation theory is studied. The verification segment is divided into two parts. In the first and second sections, the credibility of the results of this study are confirmed by the results extracted using COMSOL multiphysics software and published articles in the literature,... 

    An investigation on dynamic behavior of rotating shafts using a pipe elbow finite element formulation

    , Article Engineering Solid Mechanics ; Volume 10, Issue 2 , 2022 , Pages 179-190 ; 22918744 (ISSN) Sajjadpour, M ; Hosseini Kordkheili, S. A ; Sharif University of Technology
    Growing Science  2022
    Abstract
    Rotating shafts have a vast application in various industries especially in the aerospace industry such as engines, compressors and turbines. The researchers have performed considerable efforts on the rotating shafts’ dynamic behavior because of their sensitivity to the rotor specifications and different parameters such as supports. In this paper by employing a pipe elbow element, an especial finite element formulation is derived to investigate dynamic behavior of rotating shaft in the presence of support clearance. The proposed element consists of four nodes with twenty-four degrees of freedom, which also accounts for the shear and gyroscopic effects. Within a finite element analysis... 

    An optimized thermal cracking approach for onsite upgrading of bitumen

    , Article Fuel ; Volume 307 , 2022 ; 00162361 (ISSN) Salehzadeh, M ; Kaminski, T ; Husein, M. M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Onsite partial upgrading is a promising strategy for facilitating pipeline transportation of bitumen without the use of diluent. In the present work, a one-step treatment using an autoclave is optimized toward upgrading Alberta bitumen of 9.6 API gravity and 925,000 cP viscosity. The thermal cracking process was kept simple in order to maintain an economic and environmental advantage. Optimum conditions entailed 75 min of reaction time at 420 °C, without quenching the reactor. These conditions corresponded to highest centrifuged oil product yield of 73.3 ± 1.1 wt%, viscosity of 34 ± 2 cP and API gravity of 18.9 ± 0.5. H-NMR, CHNS and FTIR measurements revealed thermally cracked asphaltenes... 

    Dynamic simulation of natural gas transmission pipeline systems through autoregressive neural networks

    , Article Industrial and Engineering Chemistry Research ; Volume 60, Issue 27 , 2021 , Pages 9851-9859 ; 08885885 (ISSN) Fakhroleslam, M ; Bozorgmehry Boozarjomehry, R ; Sahlodin, A. M ; Sin, G ; Mansouri, S. S ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Transmission of natural gas from its sources to end users in various geographical locations is carried out mostly by natural gas transmission pipeline networks (NGTNs). Effective design and operation of NGTNs requires insights into their steady-state and, particularly, dynamic behavior. This, in turn, calls for efficient computer-aided approaches furnished with accurate mathematical models. The conventional mathematical methods for the dynamic simulation of NGTNs are computationally intensive. In this paper, the use of autoregressive neural networks for cost-effective dynamic simulation of NGTNs is proposed. Considering the length, diameter, roughness, and elevation as the main... 

    A review on the applications of micro-/nano-encapsulated phase change material slurry in heat transfer and thermal storage systems

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 145, Issue 2 , 2021 , Pages 245-268 ; 13886150 (ISSN) Ghoghaei, M. S ; Mahmoudian, A ; Mohammadi, O ; Shafii, M. B ; Jafari Mosleh, H ; Zandieh, M ; Ahmadi, M. H ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    In modern heat transfer systems, thermal storage not only causes the balance between demand and supply, but also improves the heat transfer efficiency in these systems. In the present study, a comprehensive review of the applications of micro- or nano-encapsulated phase change slurries (MPCMs/NPCMs), as well as their effects on thermal storage and heat transfer enhancement, has been conducted. MPCMs/NPCMs have a myriad of applications and various usages such as pipe and channel flows, photovoltaic/thermal, solar heaters, air conditioning systems, storage tanks and heat pipes that have been categorized and studied. It was found that there are many advantageous adding MPCM/NPCM to the base... 

    A novel energy storage system for latent heat recovery in solar still using phase change material and pulsating heat pipe

    , Article Renewable Energy ; Volume 163 , 2021 , Pages 2115-2127 ; 09601481 (ISSN) Khalilmoghadam, P ; Rajabi Ghahnavieh, A ; Shafii, M. B ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this study, a latent heat storage unit and built-in condenser were integrated with a solar still. Storage of dissipated latent heat of vapor during the day and using it after sunset prolongs system operation. During the day, the entire solar radiation was consumed to heat the saline water and only the heat coming from the condensation of vapor was stored in the phase change material (PCM). The dissipated heat from the condenser body was transferred to the PCM and stored. Additionally, the existence of PCM on the outer surfaces of the condenser prevented the rise of condenser wall temperature during the day and kept the condenser temperature low. After sunset, the heat stored in the PCM... 

    The impacts of utilizing nano-encapsulated PCM along with RGO nanosheets in a pulsating heat pipe, a comparative study

    , Article International Journal of Energy Research ; Volume 45, Issue 13 , 2021 , Pages 19481-19499 ; 0363907X (ISSN) Mohammadi, O ; Shafii, M. B ; Rezaee Shirin Abadi, A ; Heydarian, R ; Ahmadi, M. H ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    Heat pipes are useful devices in heat transfer and particularly, in cooling systems. Given the high demand for cooling systems in various applications, an improvement in the performance of heat pipes has gained much attraction in recent years. In this study, the effects of utilizing working fluids with different thermal properties on the performance of pulsating heat pipes (PHP) are experimentally studied. Hence, nano-encapsulated phase change material (NPCM), reduced graphene oxide nanosheets, and their mixture, as a novel hybrid nanofluid, are prepared and dispersed in water as a working fluid. NPCM at 3 concentrations of 5, 10, and 20 g/L, as well as nanosheets at three concentrations of... 

    The effect of variable temperature and location on relative thermal conductivity (RTC) on the heat pipe in the presence of AL2O3 nanoparticles: Numerical and optimization approaches

    , Article Journal of the Taiwan Institute of Chemical Engineers ; Volume 124 , 2021 , Pages 132-149 ; 18761070 (ISSN) Mohammadiun, M ; Mohammadiun, H ; Alizadeh, R ; Mesgarpour, M ; Younesian, A ; Jowkar, S ; Sharif University of Technology
    Taiwan Institute of Chemical Engineers  2021
    Abstract
    Background: The cooling system is one of the important parts of new devices such as smartphones, servers, and other electrical devices. By employing the almost all heat transfer methods such as conduction, evaporation and condensation, heat pipes are the best choice to increase the heat transfer. The thermal conductivity of heat pipe is much higher than fins because they benefit from condensation and evaporation simultaneously. Methods: This study tries to present relative thermal conductivity base on temperature and length of a heat pipe in optimized geometry. To achieve this aim, unsteady, multiphase fluid was considered inside the heat pipe. Evaporation, condensation, and conduction were... 

    Experimental and CFD simulation of slurry flow in the annular flow path using two-fluid model

    , Article Journal of Petroleum Science and Engineering ; Volume 198 , 2021 ; 09204105 (ISSN) Movahedi, H ; Jamshidi, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    The current study is allocated to experimental evaluation of the multiphase flow of fine solid particles (FSPs) as well as comprehensive numerical study in an annular space under static, laminar, and turbulent flow conditions with consideration of the inner pipe eccentricity and rotation. The experimental investigation was carried out using an annular pipe flow loop. The numerical modeling and simulation of the multiphase flow in the annular space have been performed using the Euler-Euler approach. The unsteady-state multiphase model based on the kinetic theory of granular flow (KTGF) is developed to investigate the particulate flow characteristics in the annular space. Moreover, Standard... 

    Utilization of in-pipe hydropower renewable energy technology and energy storage systems in mountainous distribution networks

    , Article Renewable Energy ; Volume 172 , 2021 , Pages 789-801 ; 09601481 (ISSN) Saber, H ; Mazaheri, H ; Ranjbar, H ; Moeini Aghtaie, M ; Lehtonen, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Million miles of gravity-fed drinking water and sewage pipelines around the world, especially in rural and urban areas in mountain ranges, have introduced a new renewable energy sources (RES), i.e., in-pipe hydropower systems (IHS). Output power of this technology, similar to other types of RES, suffers from intermittency, while it is still more predictable in comparison to other technologies of RESs. Besides, energy storage systems (ESS) are introduced as a pivotal technology for dealing with the intermittent and non-dispatchable characteristics of IHS through spatio-temporal arbitrage. This paper aims to develop a stochastic mixed-integer linear programming (MILP) formulation that... 

    Effect of working fluid inventory and heat input on transient and steady state behavior of a thermosyphon

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 143, Issue 5 , 2021 , Pages 3825-3834 ; 13886150 (ISSN) Sadrameli, S. M ; Forootan, D ; Farajimoghaddam, F ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    The effect of working fluid inventory and heat input on the performance of thermosyphon is investigated in this paper. First, a thermosyphon with diameter of 16 mm made of steel with toluene as working fluid and the length of the evaporator, adiabatic and condenser section 10, 23 and 17 cm was considered, respectively. The working fluid inventory was considered 0.1, 0.14, 0.18 and 0.24 of total volume of thermosyphon and in each case 54–235 W of heat input applied to the evaporator area also. In order to evaluate the transient behavior of the thermosyphon, in any amount of working fluid, 28 W of heat input was considered and temperature of the evaporator area were recorded at different... 

    On the stability of rotating pipes conveying fluid in annular liquid medium

    , Article Journal of Sound and Vibration ; Volume 494 , 2021 ; 0022460X (ISSN) Abdollahi, R ; Dehghani Firouz-abadi, R ; Rahmanian, M ; Sharif University of Technology
    Academic Press  2021
    Abstract
    This study provides a stability analysis of flexible rotating pipes taking into account the simultaneous effects of internal and external fluid loading. Using the Euler-Bernoulli beam assumptions, governing equations for flexural vibrations of rotating pipes are obtained. The internal flow characteristics and the double gyroscopic effect are taken into account when deriving the structural equations coupled with the internal flow. External fluid loading is determined by a special linearization of the Navier-Stokes equations. Considering the circular wall of the pipe as an impermeable boundary to the flow, fluid-induced forcing functions are obtained and then applied to the structural... 

    On the stability of rotating pipes conveying fluid in annular liquid medium

    , Article Journal of Sound and Vibration ; Volume 494 , 2021 ; 0022460X (ISSN) Abdollahi, R ; Dehghani Firouz-abadi, R ; Rahmanian, M ; Sharif University of Technology
    Academic Press  2021
    Abstract
    This study provides a stability analysis of flexible rotating pipes taking into account the simultaneous effects of internal and external fluid loading. Using the Euler-Bernoulli beam assumptions, governing equations for flexural vibrations of rotating pipes are obtained. The internal flow characteristics and the double gyroscopic effect are taken into account when deriving the structural equations coupled with the internal flow. External fluid loading is determined by a special linearization of the Navier-Stokes equations. Considering the circular wall of the pipe as an impermeable boundary to the flow, fluid-induced forcing functions are obtained and then applied to the structural... 

    Effects of perforated anchors on heat transfer intensification of turbulence nanofluid flow in a pipe

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 141, Issue 5 , 2020 , Pages 2047-2059 Adibi, O ; Rashidi, S ; Abolfazli Esfahani, J ; Sharif University of Technology
    Springer Netherlands  2020
    Abstract
    In this paper, a study is conducted to determine the influences of perforated anchors on heat transfer intensification of turbulence nanofluid flow in a pipe. Six different turbulence models are used, and the results obtained by these models are benchmarked with the existing theoretical data to select the best turbulence model. The outputs showed that the k–ε–RNG–scalable wall function model has higher accuracy and so it is selected to simulate this problem. The influences of various parameters including the addition of perforation on the anchors, the perforation diameter (in the range of 1–5 mm), the Re number (in the range of 5000–25,000), and the volumetric concentration of nanoparticles... 

    Experimental and simulation investigation of pulsed heat pipes in gas compressors

    , Article AIMS Energy ; Volume 8, Issue 3 , 2020 , Pages 438-454 Alizadeh, A ; Shafii, M. B ; Mirzahosseini, A. H ; Ataei, A ; Sharif University of Technology
    AIMS Press  2020
    Abstract
    In natural gas pressure boosting stations, air coolers are used to reduce the gas temperature. Pressure drop as an essential factor in determining the energy performance of any pressure boosting station has a significant impact on the overall performance of the gas transmission. In this paper, a laboratory pilot is designed to investigate the effect of pressure drop reduction on the use of heating pipes at the air coolers. In addition, as a case for a gas pressure boosting station, its impact over energy performance index and pressure drop parameter has been calculated through simulating. The results show, implemented PHP tubes in an air cooler, lead to reduce tube length and improve... 

    Numerical analysis of photovoltaic solar panel cooling by a flat plate closed-loop pulsating heat pipe

    , Article Solar Energy ; Volume 206 , 2020 , Pages 455-463 Alizadeh, H ; Alhuyi Nazari, M ; Ghasempour, R ; Shafii, M. B ; Akbarzadeh, A. A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Photovoltaic (PV) panels provide a suitable way for the direct conversion of solar energy into electricity. The electrical output and efficiency of PV modules are dependent on working temperature. The present study contributes to investigate the efficiency of utilizing a flat plate closed-loop pulsating heat pipe (CLPHP) to cool down a PV panel in both thermal and economic aspects. Accordingly, a numerical investigation is employed to obtain the surface temperature and electrical gain of the PV panel through four scenarios, including natural cooling without additional equipment, CLPHP-based passive cooling, CLPHP-based active cooling, and a conventional flat plate cooling methods. The... 

    Geometric optimization of a double pipe heat exchanger with combined vortex generator and twisted tape: A CFD and response surface methodology (RSM) study

    , Article Thermal Science and Engineering Progress ; Volume 18 , 2020 Arjmandi, H ; Amiri, P ; Saffari Pour, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this research, a numerical investigation is done on the effect of employing the new combined vortex generators, the twisted tape turbulator and Al2O3-H2O nanofluid as the involved base fluid. Such study is carried out on the behavior of the heat transfer rate and the pressure drop of a double pipe heat exchanger. Accordingly, the response surface methodology (RSM) grounded on the central composite design (CCD) is used for acquiring the optimized geometry of the combined vortex generator and twisted tape turbulator. In order to have the maximum Nusselt number and minimum friction factor, twenty cases with different pitches ratio Pil=0.09-0.18, angles (θ=0-30°) and Reynolds numbers (Re =...