Loading...
Search for: pipe
0.01 seconds
Total 287 records

    Optimization of Construction Workshop Activities in A Piping Process

    , M.Sc. Thesis Sharif University of Technology Safarzadeh, Soroush (Author) ; Shadrokh, Shahram (Supervisor)
    Abstract
    Piping process is the most important part of industries projects which pay attention to construction and installation of industrial pipelines and its facilities. In the meantime, due to increasing demand of industrial units to construction and development projects, planing and scheduling the piping is necessary. We review and discuss various aspects of the piping process, optimization process and the related scheduling literature that is called Flexible Job Shop Scheduling Problem. Then, to solve the problem, considering the real world assumptions, a mathematical model, is developed and a heuristic algorithm is introduced. Also, in order to determine an appropriate bound for the optimal... 

    Structural Health Monitoring Of Pipelines Carrying Petroleum and Chemical Materials Using Optical Fiber Sensors

    , M.Sc. Thesis Sharif University of Technology Minaeian, Farshid (Author) ; Zabihollah, Abolghasem (Supervisor) ; Behzad, Mehdi (Supervisor)
    Abstract
    Nowadays a major part of energy, fresh water and sewer water in over the world are transmitted by buried pipe, and always these lines are under the loads and different stresses such as corrosion, earth quick and etc.
    In many countries the age of these lines are more than 30 years which causes corrosion of the pipe wall and the necessity of health investigating of transmission lines has a special importance for the governments and leak detection can also keep the natural environment healthyand the costs will come down significantly, scientists and researchers have always tried different ways to check the health of the pipes.
    In the field of leak detection and the problems of age... 

    Stability of Fractional Viscoelastic Pipes Conveying Fluid in the External Cross Flow

    , M.Sc. Thesis Sharif University of Technology Shahali, Pooriya (Author) ; Hosseini Kordkhaili, Ali (Supervisor) ; Haddadpour, Hassan (Co-Advisor)
    Abstract
    In this thesis, the dynamic behavior of a pinned-pinned fractional viscoelastic pipe conveying fluid is examined in the external cross flow. The Galerkin method is employed to discretize the nonlinear coupled equations of motion for viscoelastic pipe conveying fluid in the external cross flow. Consequently, four modes of system are obtained. In addition, direct perturbation method of multiple scale is used to solve the governing nonlinear coupled equations of motion for the fractional viscoelastic pipe conveying pulsating fluid in the external cross flow. Moreover, time response diagrams are drawn in order to investigate under effects of the internal fluid velocity, external fluid reduced... 

    Visualization and Investigation of The Influence of the Connecting Channels on Flat-Plate Pulsating Heat-Pipes’ Heat-Transfer

    , M.Sc. Thesis Sharif University of Technology Ebrahimi Dehshali, Massoud (Author) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    A desired circulatory flow in flat-plate pulsating heat-pipes may improve electronic thermal management. This desired flow can be achieved by fabricating connecting channels (CCs) to increase flow resistance in one direction. In addition, connecting channels may increase the freedom degree of fluid. In order to investigate the effect of CC, two aluminum flat plate thermal spreaders with overall size 320mm×220mm×5mm - one with CC (CC-FPHP) and one without it- were fabricated. Both of the speaders have square channels with crosssection 2mm×2.8mm. The FPHPs were charged with ethanol as working fluid with filling ratios of 35%, 50%, 65%, and 80% by volume. Performance of connecting-channels in... 

    Visualization of Flow Pattern and Experimental investigation of Thermal Performance in a FerroFluid Charged Pulsating Heat Pipe

    , M.Sc. Thesis Sharif University of Technology Dayanim, Pantea (Author) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    Nowadays, there is rapid development of practical engineeringsolutions to a multitude ofheating problems. Heat generated inmicro-devices used in manufacturing and electronics require specialsolutions. Pulsating Heat Pipes (PHPs) are novel and efficient technology in the field of heat transfer and previous researches show that using ferrofluid (magnetic nanofluid) in Pulsating Heat Pipes (PHPs) enhances the thermal performance in comparison with the case of distilled water under certain conditions by applying magnetic fields and the performance is dramatically improved at horizontal heating mode. In this research an experimental setup for visualizing two phase flows in a flat-plate Pulsating... 

    Visualization of Flow Pattern and Experimental Investigation of Thermal Performance of Pulsating Heat Pipe with Proposed Fluid

    , M.Sc. Thesis Sharif University of Technology Gandomkar, Amir Reza (Author) ; Saeedi, Mohammad Hassan (Supervisor) ; Shafii, Mohammad Behshad ($item.subfieldsMap.e)
    Abstract
    Pulsating heat pipe (PHP) is a two-phase device for the means of transferring high heat fluxes and is used extensively for the electronic cooling. In this study the different flow regimes in PHP with different fluids have been investigated. In this research, 3 different fluids including: Pure fluids, Ferro-fluid and surfactant solution with %50 filling ratio have been used. For ferro-fluid, 5 different concentrations and 3 type of magnetic fields have been operated in 2 different heat pipes. Results show that ferrofluid is more stable in Pyrex made-heat pipe for long period of time and no magnet mode has the best thermal performance due to high conductivity of fluid. In copper made-heat pipe... 

    Modeling and Heat Management in Polymer Electrolyte Membrane Fuel Cell Using Heat pipes for CHP Applications

    , M.Sc. Thesis Sharif University of Technology Tahmasbi, Amir Abbas (Author) ; Roshandel, Ramin (Supervisor) ; Shafii, Mohammad Behshad (Co-Advisor)
    Abstract
    Fuel cell-based CHP systems for distributed residential power generation represent an interesting alternative to traditional thermoelectric plants. This is mainly due to the high efficiency obtainable in the production of electricity and heat in a decentralized, quiet and environmental friendly way. The current thesis focuses on the development, in Matlab_Simulink environment, of a complete dynamic model of a residential cogenerative (CHP) energy system consisting of the Proton Exchange Membrane fuel cell (PEMFC), in two scenarios. The first scenario emphasizes on use of fan and usual Heat Exchanger for cooling of Proton membrane fuel cell and conveying generated heat in PEM fuel cell to... 

    Modeling and Performance Investigation of Airlift Pump with Conical Upriser Pipe

    , M.Sc. Thesis Sharif University of Technology Hosseini Abadshapoori, Mehdi (Author) ; Saeedi, Mohammad Hassan (Supervisor)
    Abstract
    Airlift pumps are widely used in numerous industries for different applications such as transmission of viscous fluids (heavy hydrocarbons of oil), pumping of corrosive liquids and so on. In general, parameters which affect the efficiency of an airlift pump can be classified into two major groups. The first group is the designing parameters such as the diameter of the upriser pipe or the submergence ratio. The second group is the operation parameters such as diameter of the bubble, inlet pressure of the gas and so on. One of the designing parameters which can have an effective influence on the performance of an airlift pump is the non-constant diameter of the upriser pipe, which can be... 

    Modeling and Experimental Investigation of a solar Hybrid System to Produce Freshwater from Waste Heat of Photovoltaic Module by Using Thermosyphon heat pipes with different Configurations

    , M.Sc. Thesis Sharif University of Technology Hooshmand, Payam (Author) ; Behshad Shafii, Mohammad (Supervisor) ; Roshandel, Ramin (Supervisor)
    Abstract
    With regard to an increasing world population and the constant capacity of water resources, new and valid methods should be implemented to preserve freshwater resources and accordingly produce drinking water. In the present study, a solar hybrid system was studied by experimental and theoretical means to facilitate the transformation of waste heat from photovoltaic module (PV module) into useful heat that can be used in a solar desalination (SD) system for freshwater production purposes. The study aimed to fabricate a SD system by using both PV module and thermosyphon heat pipes (THPs) technologies in a single system. In the modeling section, the goal is to present a comprehensive model... 

    Simulation of Fluid Flow in Porous Media with Pipe Flow Model

    , M.Sc. Thesis Sharif University of Technology Mostafanezhad Asl Marand, Shahaboddin (Author) ; Rouhani, Shahin (Supervisor)
    Abstract
    Understanding of how fluid flow through porous media has many application in industry like Water filters technology and Gravel dams. also it’s very important in oil industry in areas like oil tank engineering. For doing this important thing many peoples tried to find out how fluid flows through the porous media they already invented the various kind of models, .the model used in this thesise is called pipe flow model which people use this model before but what I did have a little difference I used random lattice which people did not paid attention to it so the result of this model will be more trustable and close to what happens in nature. The result of this simulation showed us that the... 

    Physical Modeling to Iimpact of Burial Depth of Pipe in Soil Slopes Under Dynamic Loading

    , M.Sc. Thesis Sharif University of Technology Derakhshan Ghazani, Reza (Author) ; Jafarzadeh, Fardin (Supervisor)
    Abstract
    Buried pipelines as vital arteries,which will play a major role in human life should be designed and implemented in such a way that withstand the least possible harm with regard economic issues.In this study we tried to use a physical model, the impact of pipeline buried in soil slope under dynamic load are examined.To achive this goal we use a rigid metal bax with dimensions of 301.5*101.5*155 cubic meters for modeling. Pipes used in these experiments has a diameter of 1.6 cm which are connected by a fulcrum to the wall box. In order to measure strain generated in the pipe we use a series of strain gauges that were installed using the pipe at some points. Physical models made on Sharif... 

    Numerical Modeling of Stress Applied on Stuck Pipe during Drilling and Completion

    , M.Sc. Thesis Sharif University of Technology Pourzeinolabedin, Arman (Author) ; Shad, Saeed (Supervisor) ; Zivar, Davood (Co-Supervisor)
    Abstract
    There is many operational problems in the drilling industry. One of these basic problems is stuck pipe. This problem occurs with different intensities in different formations due to particles falling into the well, pressure difference in the formation and drilling mud and instability of the wellbore and creates conditions in which the drilling string can neither rotate nor move, so all Drilling operations are stopped so that according to studies, pipe sticking is one of the most important reasons for stopping drilling operations. This stop imposes millions of dollars of operational damage on oil services companies annually. Therefore, identifying and prediction of stuck pipe as a major... 

    Methematical Modeling of Steady State Operation of A Loop Heat Pipe

    , M.Sc. Thesis Sharif University of Technology Mostafazade Abolmaali, Ali (Author) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    Loop heat pipe (LHP) is a two phase heat transfer device that is mostly used in cooling spacecrafts facilities. In this research a novel LHP is studied analytically and its steady state operating characteristics is analyzed in a one dimensional approach with heat transfer and pressure drop correlations. The novel LHP has a new arrangement in evaporator and reservoir configuration in comparison with conventional LHPs, which results in a different energy and fluid flow. In addition, the novel LHP has a new mechanism for acive control of working temperature. In modeling the proposed LHP the fluid and energy flows are first determined, then proper correltaions for calculationg each energy flow... 

    Modeling of Fluid Flow and Heat Transfer at the Entrance Zone of a Partially Filled Porous Channel

    , M.Sc. Thesis Sharif University of Technology Inanloo, Saeed (Author) ; Nouri Borujerdi, Ali (Supervisor)
    Abstract
    This paper numerically studies the convection heat transfer enhancement of a developing two dimensional laminar flow in a pipe partially filled with porous materials. One of the most important effects of the systems with porous materials in them, is that they can improve some heat transfer components if they be used in a proper way. This study has been performed under both local thermal equilibrium (LTE) and local thermal non-equilibrium (LTNE) conditions. Two energy equations are used in non-thermal equilibrium condition between fluid and porous material. Darcy-Brinkman-Forchheimer model is used to model the flow inside the porous medium. The effects of different parameters such as, Darcy... 

    Modeling of Water Injection into the Desuperheater of Steam Generator

    , M.Sc. Thesis Sharif University of Technology Setareh, Milad (Author) ; Saidi, Mohammad Hasan (Supervisor)
    Abstract
    One of the most important equipment in a power station is desuperheater which its operation has effect on power station performance and efficiency.It is necessary to identify and evaluate the most important factors that have effect on its performance. Using desuperheater cause that the temperature of exhausting superheat steam of boiler decreases to the desired quantity. If the temperature of superheat steam is very high, it will cause burning of superheater pipes that is very dangerous.Steam is used for two purpose of power generating and operational process. Unfortunately these applications have different requirement. In power generating for maximizing efficiency, turbine needs high... 

    Optimal Model of Industrial Waste Heat Application in Desalination System: A Case Study of Hormozgan Province

    , M.Sc. Thesis Sharif University of Technology Yousefi, Paria (Author) ; Avami, Akram (Supervisor)
    Abstract
    Increasing population growth and scarcity of fresh water resources have created the challenge of water supply, especially in the Mena region. Thus, many countries in the region have turned to innovation in the development of high-energy seawater desalination technologies. Utilizing the waste heat of refineries in the desalination industry can reduce costs and preserve the environment. In this article, effective ways to use the waste heat of other flue recovery steam of Bandar Abbas oil refinery are investigated. The integration of the heat recovery system consisting of recuperative heat exchangers and heat pipes with thermal desalination plants is investigated by multi-stage flash and... 

    Design and Fabrication of a Fluid Oscillation Micro-Power Generator in a Pulsating Heat Pipe and its Performance Experimental and Theoretical Investigation

    , M.Sc. Thesis Sharif University of Technology Zia Oleslami, Naser (Author) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    Pulsating heat pipes have been more studied in recent two decades as effective tools in dissipating waste heat from electronic components. Due to oscillating fluid flow model, these tubes have the potential of converting waste energy to power. This research presents a system that makes this potential to act. In this system, the oscillating slug-plug fluid flow pattern in an open-looped pulsating heat pipe makes a permanent magnet which is levitated in Ferrofluid to vibrate in an electromagnetic vibration-based generator in order to induce electro motive force. The fluid flow regime in pulsating heat pipe has been simulated numerically with finite element scheme. The model results for fluid... 

    Design and Integration of a Connected Pipe Test Facility for Liquid Fuel Ramjet

    , M.Sc. Thesis Sharif University of Technology Tavassoli, Farid (Author) ; Mazaheri, Karim (Supervisor)
    Abstract
    In the present study, design and manufacturing of a connected pipe liquid fuel ramjet test platform is implemented for performance investigation of a research liquid fuel ramjet burner in the thermodynamic flight conditions. Design and manufacturing of platform systems include: the hot air supply system, the liquid fuel system and the square cross-sectional combustion chamber with the v-gutter shape flame holder. In order to determine the performance range of subsystems, calibration process has been carried out. Calibration process of the hot air supply system includes: determining of the burner inlet velocity and temperature. Also, calibration of the liquid fuel system includes: determining... 

    Design and Fabrication of a Solar Still Equipped with Latent Heat Storage System and Heat Pipes

    , M.Sc. Thesis Sharif University of Technology Faegh, Meysam (Author) ; Shafii, Mohammad Behshad (Supervisor)

    Design and Numerical Optimization of Hot Air Supply System of Connected-pipe Ramjet Engine Test Facility

    , M.Sc. Thesis Sharif University of Technology Nazem Roaya, Mohammad Amin (Author) ; Mazaheri, Karim (Supervisor)
    Abstract
    In the present study an air supply system of a connected-pipe ramjet test facility for liquid fuel ramjet engine in theoretical and numerical base designed and optimized that the purpose is for performance test of a ramjet engine combustor in flight condition. The flight condition gained from previous assessment that is 1.5 kg air in 10 bars and 550 K. Air supply subsystems consist of air tanks, compressors, valves, regulators, preheater, and fuel and oxygen systems that are designed in a preliminary process and then valves, orifices, and fuel and oxygen systems optimized by HYSYS program. In the last step preheater that is a gas turbine combustor investigated and possible changes made by...