Loading...
Search for: robustness--control-systems
0.012 seconds
Total 120 records

    Performance enhancement of an uncertain nonlinear medical robot with optimal nonlinear robust controller

    , Article Computers in Biology and Medicine ; Volume 146 , 2022 ; 00104825 (ISSN) Azizi, S ; Soleimani, R ; Ahmadi, M ; Malekan, A ; Abualigah, L ; Dashtiahangar, F ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    So the design and control of an accurate robot for this purpose is very critical for saving the patients. Modification of the model and designing two optimized nonlinear robust controllers for the first time for the parallel manipulator medical robot and cardiopulmonary resuscitation. The main objective of the current study in order to decrease the overshoot and increase the accuracy of the position and convergence speed and robustness to destructive factors affecting the precision of the robot. In this paper firstly, the kinematics and dynamics analysis of a translational parallel manipulator robot is presented and a non-linear model in the presence of uncertainties, disturbances, and... 

    Robust D-stabilization analysis of fractional-order control systems with complex and linearly dependent coefficients

    , Article IEEE Transactions on Systems, Man, and Cybernetics: Systems ; Volume 52, Issue 3 , 2022 , Pages 1823-1837 ; 21682216 (ISSN) Mohsenipour, R ; Fathi Jegarkandi, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    This article focuses on the robust D-stabilization analysis of fractional-order control systems where each of the system and the controller may be of fractional order. The coefficients of the system are considered as complex linear functions of interval uncertain parameters, so this article deals with fractional-order polytopic systems. First, a necessary and sufficient condition is introduced for the robust D-stabilization of the closed-loop control system based on the zero exclusion condition and the value set concept. Then, the geometric pattern of the value set of the characteristic polynomial is obtained analytically using the exposed vertices. Second, a function is presented to check... 

    Variable speed wind turbine power control: A comparison between multiple MPPT based methods

    , Article International Journal of Dynamics and Control ; Volume 10, Issue 2 , 2022 , Pages 654-667 ; 2195268X (ISSN) Nouriani, A ; Moradi, H ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Reducing the renewable energy costs is necessary for the competition with the fossil energies and control strategies have great impact on the efficiency of wind machines. In the wind turbine industry, a practical approach is to maximize the energy capture of a wind machine by optimizing the power coefficient in the under-rated situations. In this paper, with the main objective of maximizing the energy capture in the second region, four different control strategies are compared in the presence of uncertainties. The proposed control methods are compared based on their power capture and robustness against probable uncertainties in the structural and environmental parameters. A two-mass... 

    Uncertainty cost of stochastic producers: metrics and impacts on power grid flexibility

    , Article IEEE Transactions on Engineering Management ; Volume 69, Issue 3 , 2022 , Pages 708-719 ; 00189391 (ISSN) Pourahmadi, F ; Hosseini, S. H ; Dehghanian, P ; Shittu, E ; Fotuhi Firuzabad, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    The widespread presence of contingent generation, when coupled with the resulting volatility of the chronological net-load (i.e., the difference between stochastic generation and uncertain load) in today's modern electricity markets, engender the significant operational risks of an uncertain sufficiency of flexible energy capacity. In this article, we address several operational flexibility concerns that originate from the increase in generation variability captured within a security-constrained unit commitment (SCUC) formulation in smart grids. To quantitatively assess the power grid operational flexibility capacity, we first introduce two reference operation strategies based on a two-stage... 

    Reducing conservatism in robust stability analysis of fractional-order-polytopic systems

    , Article ISA Transactions ; Volume 119 , 2022 , Pages 106-117 ; 00190578 (ISSN) Abolpour, R ; Dehghani, M ; Tavazoei, M. S ; Sharif University of Technology
    ISA - Instrumentation, Systems, and Automation Society  2022
    Abstract
    This paper studies the robust stability of the fractional-order (FO) LTI systems with polytopic uncertainty. Generally, the characteristic polynomial of the system dynamic matrix is not an affine function of the uncertain parameters. Consequently, the robust stability of the uncertain system cannot be evaluated by well-known approaches including LMIs or exposed edges theorem. Here, an over-parameterization technique is developed to convert the main characteristic polynomial into a set of local over-parameterized characteristic polynomials (LOPCPs). It is proved that the robust stability of LOPCPs implies the robust stability of the uncertain system. Then, an algorithm is proposed to explore... 

    Multi-objective economic-statistical design of simple linear profiles using a combination of NSGA-II, RSM, and TOPSIS

    , Article Communications in Statistics: Simulation and Computation ; Volume 51, Issue 4 , 2022 , Pages 1704-1720 ; 03610918 (ISSN) Roshanbin, N ; Ershadi, M. J ; Niaki, S. T. A ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    A multi-objective economic-statistical design is aimed in this article for simple linear profiles. In this design, the interval between two successive sampling intervals, the sample size and the number of adjustment points alongside, the parameters of the monitoring scheme are determined such that not only the implementation cost is minimized, but also the profile exhibits desired statistical performances. To this aim, three objective functions are considered in the multi-objective optimization model of the problem. The Lorenzen–Vance cost function is used to model the implementation cost as the first objective function to be minimized. The second objective function maximizes the in-control... 

    A framework for prescribed-time control design via time-scale transformation

    , Article IEEE Control Systems Letters ; Volume 6 , 2022 , Pages 1976-1981 ; 24751456 (ISSN) Shakouri, A ; Assadian, N ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    This letter presents a unified framework for the design of prescribed-time controllers under time-varying input and state constraints for normal-form unknown nonlinear systems with uncertain input gain. The proposed approach is based on a time-domain mapping method by which any infinite-time system can be corresponded to a prescribed-time system and vice versa. It is shown that the design of a constrained nonasymptotic prescribed-time controller can be reduced to the asymptotic control design for an associated constrained infinite-time system. Faà di Bruno's formula and Bell polynomials are used for a constructive representation of the associated infinite-time system. The presented results... 

    An economic-statistical design of simple linear profiles with multiple assignable causes using a combination of MOPSO and RSM

    , Article Soft Computing ; Volume 25, Issue 16 , 2021 , Pages 11087-11100 ; 14327643 (ISSN) Ershadi, M. J ; Ershadi, M. M ; Haghighi Naeini, S ; Akhavan Niaki, S. T ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    An economic-statistical design with multiple assignable causes following exponential distribution is presented in this paper for linear profiles. For this purpose, a tri-objective optimization model is proposed to minimize the cost with desired statistical performances. Average Run Length (ARL) as the primary statistical measure is employed for the appraisal of the designed linear profiles. The first objective to be minimized is a cost function that models the implementation cost in different states. The second objective is to maximize ARL or the in-control average run-length of the monitoring scheme. The third objective to be minimized is ARL 1 or the out-of-control average run-length of... 

    Variable speed wind turbine power control: A comparison between multiple MPPT based methods

    , Article International Journal of Dynamics and Control ; 2021 ; 2195268X (ISSN) Nouriani, A ; Moradi, H ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Reducing the renewable energy costs is necessary for the competition with the fossil energies and control strategies have great impact on the efficiency of wind machines. In the wind turbine industry, a practical approach is to maximize the energy capture of a wind machine by optimizing the power coefficient in the under-rated situations. In this paper, with the main objective of maximizing the energy capture in the second region, four different control strategies are compared in the presence of uncertainties. The proposed control methods are compared based on their power capture and robustness against probable uncertainties in the structural and environmental parameters. A two-mass... 

    A framework for prescribed-time control design via time-scale transformation

    , Article IEEE Control Systems Letters ; 2021 ; 24751456 (ISSN) Shakouri, A ; Assadian, N ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    This letter presents a unified framework for the design of prescribed-time controllers under time-varying input and state constraints for normal-form unknown nonlinear systems with uncertain input gain. The proposed approach is based on a time-domain mapping method by which any infinite-time system can be corresponded to a prescribed-time system and vice versa. It is shown that the design of a constrained nonasymptotic prescribed-time controller can be reduced to the asymptotic control design for an associated constrained infinite-time system. Faà di Bruno’s formula and Bell polynomials are used for a constructive representation of the associated infinite-time system. The presented results... 

    Phase II monitoring of generalized linear profiles under different types of changes

    , Article Scientia Iranica ; Volume 28, Issue 1 E , 2021 , Pages 557-571 ; 10263098 (ISSN) Hajifar, S ; Mahlooji, H ; Sharif University of Technology
    Sharif University of Technology  2021
    Abstract
    Various control charts have been proposed to monitor generalized linear pro les in Phase II. However, the robustness of the proposed methods in detecting di erent types and especially di erent directions of changes is not well-studied in the literature. In real-world applications, di erent kinds of change such as drift and multiple changes are likely to occur, which can be isotonic (increasing) or antitonic (decreasing). This paper studies the robustness of the Rao Score Test (RST) method, T2, and Multivariate Exponential Weighted Moving Average (MEWMA) in di erent types, drift and multiple, and directions of changes. The RST method also bene ts from a change-point detection approach whose... 

    Direct synthesis of fixed-order multi-objective controllers

    , Article Optimal Control Applications and Methods ; Volume 41, Issue 3 , 2020 , Pages 849-865 Abdolahi, A ; Babazadeh, M ; Nobakhti, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2020
    Abstract
    This paper introduces a new methodology for the design of fixed-order multi-objective output feedback controllers. The problem comprises a set of linear matrix inequalities and an additional rank constraint. The primary idea is to classify convex subsets of the set of rank constrained matrices in such formulations, based on which two noniterative and relatively fast methods are developed. The proposed methods require solving a convex optimization problem at each step and can be applied with any weighted summation of design objectives such as (Formula presented.) performance, (Formula presented.) performance, passivity, and regional pole assignment. Several benchmark systems with performance... 

    Towards improving robustness of deep neural networks to adversarial perturbations

    , Article IEEE Transactions on Multimedia ; Volume 22, Issue 7 , 2020 , Pages 1889-1903 Amini, S ; Ghaemmaghami, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Deep neural networks have presented superlative performance in many machine learning based perception and recognition tasks, where they have even outperformed human precision in some applications. However, it has been found that human perception system is much more robust to adversarial perturbation, as compared to these artificial networks. It has been shown that a deep architecture with a lower Lipschitz constant can generalize better and tolerate higher level of adversarial perturbation. Smooth regularization has been proposed to control the Lipschitz constant of a deep architecture and in this work, we show how a deep convolutional neural network (CNN), based on non-smooth regularization... 

    System identification and robust attitude control of an unmanned helicopter using novel low-cost flight control system

    , Article Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering ; Volume 234, Issue 5 , 27 August , 2020 , Pages 634-645 Khalesi, M. H ; Salarieh, H ; Saadat Foumani, M ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    In recent years, unmanned aerial systems have attracted great attention due to the electronic systems technology advancements. Among these vehicles, unmanned helicopters are more important because of their special abilities and superior performance. The complex nonlinear dynamic system (caused by main rotor flapping dynamics coupled with the rigid body rotational motion) and considerable effects of ambient disturbance make their utilization hard in actual missions. Attitude dynamics have the main role in helicopter stabilization, so implementing proper control system for attitude is an important issue for unmanned helicopter hovering and trajectory tracking performance. Besides this,... 

    Robust D-stabilization analysis of fractional-order control systems with complex and linearly dependent coefficients

    , Article IEEE Transactions on Systems, Man, and Cybernetics: Systems ; 2020 Mohsenipour, R ; Fathi Jegarkandi, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    This article focuses on the robust D-stabilization analysis of fractional-order control systems where each of the system and the controller may be of fractional order. The coefficients of the system are considered as complex linear functions of interval uncertain parameters, so this article deals with fractional-order polytopic systems. First, a necessary and sufficient condition is introduced for the robust D-stabilization of the closed-loop control system based on the zero exclusion condition and the value set concept. Then, the geometric pattern of the value set of the characteristic polynomial is obtained analytically using the exposed vertices. Second, a function is presented to check... 

    Dynamic characterization and control of a parallel haptic interaction with an admittance type virtual environment

    , Article Meccanica ; Volume 55, Issue 3 , 2020 , Pages 435-452 Khadivar, F ; Sadeghnejad, S ; Moradi, H ; Vossoughi, G ; Sharif University of Technology
    Springer  2020
    Abstract
    Haptic interfaces, a kinesthetic link between a virtual environment and a human operator play a pivotal role in the reproduction of realistic haptic force feedback of the virtual reality-based simulators. Since most of the practical control theories are model-based, the identification of the robot’s dynamics, for precise modeling of the system dynamics, is a process of high significance and usage. This research addresses dynamic characterization, performance issues, and structural stability, associated with a parallel haptic device interaction with an admittance type virtual environment. In this regard, considering the Lion identification scheme, we characterized the dynamics of a robot... 

    Robust control of temperature during local hyperthermia of cancerous tumors

    , Article European Journal of Control ; Volume 52 , 2020 , Pages 67-77 Sayyaf, N ; Tavazoei, M. S ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Local hyperthermia is one of the most common methods to treat cancerous tumors, near the skin surface or natural body orifices. In order to study the problem of temperature control during local hyperthermia, firstly the heat conduction process during this therapy is analytically modeled by a time-delayed fractional-order transfer function, parametrized with respect to the body temperature. Since the body temperature may vary under the influence of patient physiological reaction and heat source, a robustness criterion is proposed to achieve the phase margin invariance despite of the temperature variations. Afterwards, an analytical method is proposed to tune stabilizing FO-PI/PD controllers... 

    On time-constant robust tuning of fractional order proportional derivative controllers

    , Article IEEE/CAA Journal of Automatica Sinica ; Volume 6, Issue 5 , 2019 , Pages 1179-1186 ; 23299266 (ISSN) Badri, V ; Tavazoei, M. S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    This paper deals with analyzing a newly introduced method for tuning of fractional order [proportional derivative] (FO[PD]) controllers to be used in motion control. By using this tuning method, not only the phase margin and gain crossover frequency are adjustable, but also robustness to variations in the plant time-constant is guaranteed. Conditions on the values of control specifications (desired phase margin and gain crossover frequency) for solution existence in this tuning method are found. Also, the number of solutions is analytically determined in this study. Moreover, experimental verifications are presented to indicate the applicability of the obtained results. © 2014 Chinese... 

    Robust decomposition and structured control of an islanded multi-DG microgrid

    , Article IEEE Transactions on Smart Grid ; Volume 10, Issue 3 , 2019 , Pages 2463-2474 ; 19493053 (ISSN) Babazadeh, M ; Nobakhti, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    This paper presents a new robust control strategy for islanded operation of a microgrid consisting of several distributed generation (DG) units with arbitrary topology. Each DG unit is connected to its local load through a voltage-source converter, a series RL filter and a step-up transformer. The multi-DG microgrid with arbitrary connectivity graph is modeled as a linear time-invariant system subject to a parametric, norm-bounded uncertain block. By utilizing the developed model for multi-DG microgrids, a systematic approach for the design of structured dynamic output feedback control is proposed. A convex optimization problem is developed which yields a low-order dynamic controller of... 

    A unified acceptance test framework for power plant gas turbine control systems

    , Article ISA Transactions ; Volume 85 , 2019 , Pages 262-273 ; 00190578 (ISSN) Eslami, M ; Babazadeh, M ; Sharif University of Technology
    ISA - Instrumentation, Systems, and Automation Society  2019
    Abstract
    Renovation and retrofit of gas turbine control systems yield significant economic savings, enhanced reliability, and improved performance. In recent years, the gas turbine industry is increasingly facing the need to well-established procedures for the acceptance tests of renovated control systems. This paper proposes a unified framework to evaluate the performance of renovated gas turbine control systems. Under a set of assumptions on the ambient and fuel conditions, a low-complexity modular model is presented and identified using optimization-oriented identification techniques. The accuracy of the proposed model is validated through experimental studies in full-load, min-load, and no-load...