Loading...
Search for: saidi--m--h
0.011 seconds
Total 225 records

    Numerical modeling of surface reaction kinetics in electrokinetically actuated microfluidic devices

    , Article Analytica Chimica Acta ; Vol. 838, issue , August , 2014 , pp. 64-75 ; ISSN: 00032670 Sadeghi, A ; Amini, Y ; Saidi, M. H ; Chakraborty, S ; Sharif University of Technology
    Abstract
    We outline a comprehensive numerical procedure for modeling of species transport and surface reaction kinetics in electrokinetically actuated microfluidic devices of rectangular cross section. Our results confirm the findings of previous simplified approaches that a concentration wave is created for sufficiently long microreactors. An analytical solution, developed for the wave propagation speed, shows that, when normalizing with the fluid mean velocity, it becomes a function of three parameters comprising the channel aspect ratio, the relative adsorption capacity, and the kinetic equilibrium constant. Our studies also reveal that the reactor geometry idealized as a slit, instead of a... 

    Ferrofluidic open loop pulsating heat pipes: Efficient candidates for thermal management of electronics

    , Article Experimental Heat Transfer ; Vol. 27, issue. 3 , Dec , 2014 , p. 296-312 ; ISSN: 08916152 Mohammadi, M ; Taslimifar, M ; Saidi, M. H ; Shafii, M. B ; Afshin, H ; Hannani, S. K ; Sharif University of Technology
    Abstract
    Thermal management of electronic devices is presently a serious concern. This article investigates the thermal performance of a five-turn open-loop pulsating heat pipe in both start-up and steady thermal conditions. The effects of working fluid, namely water and ferrofluid, heat input, charging ratio, ferrofluid concentration, orientation, as well as application of magnetic field, are explored. Experimental results show that using ferrofluid enhances the thermal performance in comparison with the case of distilled water under certain conditions. In addition, applying a magnetic field on the open-loop pulsating heat pipe charged with ferrofluid improves its thermal performance. Charging... 

    Gaseous slip flow mixed convection in vertical microducts with constant axial energy input

    , Article Journal of Heat Transfer ; Vol. 136, issue. 3 , 2014 ; ISSN: 00221481 Sadeghi, A ; Baghani, M ; Saidi, M. H ; Sharif University of Technology
    Abstract
    The present investigation is devoted to the fully developed slip flow mixed convection in vertical microducts of two different cross sections, namely, polygon, with circle as a limiting case, and rectangle. The two axially constant heat flux boundary conditions of H1 and H2 are considered in the analysis. The velocity and temperature discontinuities at the boundary are incorporated into the solutions using the first-order slip boundary conditions. The method considered is mainly analytical in which the governing equations in cylindrical coordinates along with the symmetry conditions and finiteness of the flow parameter at the origin are exactly satisfied. The first-order slip boundary... 

    Temperature rise in electroosmotic flow of typical non-newtonian biofluids through rectangular microchannels

    , Article Journal of Heat Transfer ; Volume 136, Issue 3 , March , 2014 ; ISSN: 00221481 Yavari, H ; Sadeghi, A ; Saidi, M. H ; Chakraborty, S ; Sharif University of Technology
    Abstract
    Electroosmosis is the main mechanism for flow generation in lab-on-a-chip (LOC) devices. The temperature rise due to the Joule heating phenomenon, associated with the electroosmosis, may be detrimental for samples being considered in LOCs. Hence, a complete understanding of the heat transfer physics associated with the electroosmotic flow is of high importance in design and active control of LOCs. The objective of the present study is to estimate the temperature rise and the thermal entry length in electroosmotic flow through rectangular microchannels, having potential applications in LOC devices. Along this line, the power-law rheological model is used to account for non-Newtonian behavior... 

    Experimental investigation of aqueous LiBr solution absorber bundle with horizontal elliptical tubes

    , Article HVAC and R Research ; Volume 20, Issue 2 , 17 February , 2014 , Pages 251-263 ; ISSN: 10789669 Abyaneh, M. H. J ; Saidi, M. H ; Aghanajafi, C ; Sharif University of Technology
    Abstract
    This article reports on the results of experimental studies on combined heat and mass transfer in the absorption of water vapor by aqueous LiBr solution under laminar falling film flow on the horizontal elliptical tube (HET) bundle. The performance of the absorber with HET has been calculated based on the measured parameters. The outputs are shown with respect to absorbent inlet mass concentration and Reynolds Number (Re), coolant inlet temperature and flow rate, and absorber vapor pressure. The results are compared with the published experimental results on absorber bundle with horizontal circular tubes (HCT). The results show that the heat and mass transfer coefficients enhanced on HET at... 

    Open-loop pulsating heat pipes charged with magnetic nanofluids: powerful candidates for future electronic coolers

    , Article Nanoscale and Microscale Thermophysical Engineering ; Volume 18, Issue 1 , 2014 , Pages 18-38 ; ISSN: 15567265 Mohammadi, M ; Taslimifar, M ; Haghayegh, S ; Hannani, S. K ; Shafii, M. B ; Saidi, M. H ; Afshin, H ; Sharif University of Technology
    Abstract
    The present research proposes an effective method to enhance the heat transport capability of conventional electronic coolers and improve their thermal management. Pulsating heat pipes (PHPs) are outstanding heat transfer devices in the field of electronic cooling. In the present study, two sets of open-loop pulsating heat pipes (OLPHPs) for two different magnetic nanofluids (with and without surfactant) were fabricated and their thermal performance was experimentally investigated. Effects of working fluid (water and two types of magnetic nanofluids), heating power, charging ratio, nanofluid concentration, inclination angle, application of a magnetic field, and magnet location are described.... 

    Buoyancy effects on gaseous slip flow in a vertical rectangular microchannel

    , Article Microfluidics and Nanofluidics ; Vol. 16, issue. 1-2 , 2014 , pp. 207-224 ; ISSN: 16134982 Sadeghi, M ; Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    Abstract
    Consideration is given to the buoyancy effects on the fully developed gaseous slip flow in a vertical rectangular microduct. Two different cases of the thermal boundary conditions are considered, namely uniform temperature at two facing duct walls with different temperatures and adiabatic other walls (case A) and uniform heat flux at two walls and uniform temperature at other walls (case B). The rarefaction effects are treated using the firstorder slip boundary conditions. By means of finite Fourier transform method, analytical solutions are obtained for the velocity and temperature distributions as well as the Poiseuille number. Furthermore, the threshold value of the mixed convection... 

    Performance analysis and parametric study of thermal energy storage in an aquifer coupled with a heat pump and solar collectors, for a residential complex in Tehran, Iran

    , Article Applied Thermal Engineering ; Volume 62, Issue 1 , 2014 , Pages 156-170 ; ISSN: 13594311 Ghaebi, H ; Bahadori, M. N ; Saidi, M. H ; Sharif University of Technology
    Abstract
    Aquifers are underground porous formations containing water. Confined aquifers are the formations surrounded by two impermeable layers, called cap rocks and bed rocks. These aquifers are suitable for seasonal thermal energy storage. In the present study, a confined aquifer was considered to meet the cooling and heating energy needs of a residential complex located in Tehran, Iran. Three different alternatives were analyzed in this aquifer thermal energy storage (ATES), including: using ATES for cooling alone, for cooling and heating, as a heat pump, and for heating alone, employing flat plate solar energy collectors. A numerical simulation, based on the finite difference method, was carried... 

    Experimental investigation of characteristic curve for gas-lift pump

    , Article Journal of Petroleum Science and Engineering ; Volume 62, Issue 1 , 2014 , Pages 156-170 ; ISSN: 09204105 Hanafizadeh, P ; Raffiee, A. H ; Saidi, M. H ; Sharif University of Technology
    Abstract
    Using gas-liquid lifting pumps is a quite different technology for pumping two or three phase flows rather than other types of pumping systems. Therefore, finding performance characteristic chart for this type of pumping system seems to be necessary. In this type of pumping system, the liquid phase is pushed upward by the compressed air which has been injected in the bottom of upriser pipe of the pump. Therefore, compressed air acts as the driving force in gas lifting pumps instead of moving parts in ordinary pumps. It can be concluded that the definition of characteristic curve used for ordinary pump is not very appropriate for this type of pumping system. In this study, it has been... 

    A new experimental approach to investigate the induced force and velocity fields on a particulate manipulation mechanism

    , Article Scientia Iranica ; Vol. 21, Issue 2 , 2014 , pp. 414-424 ; ISSN: 10263098 Zabetian, M ; Shafii, M. B ; Saidi, M. H ; Saidi, M. S ; Rohani, R ; Sharif University of Technology
    Abstract
    Identification and minimization of error sources are important issues in experimental investigations. Mainly in micro-scale problems, precise settings should be applied to high-tech test beds to reduce disturbance and induced motion. An experimental study is conducted to assess the role of induced forces and velocity fields in a particulate system used for particle identification and separation. Two main effects caused by disturbances are sampling errors and induced motion in the channel, either on fluid or dispersed phases. Different disturbance scenarios are implemented on the test bed and then the system response is reported. In order to assess induced motion as a result of applied... 

    Gaseous slip flow mixed convection in vertical microducts of constant but arbitrary geometry

    , Article Journal of Thermophysics and Heat Transfer ; Volume 28, Issue 4 , 1 October , 2014 , Pages 771-784 ; ISSN: 08878722 Sadeghi, M ; Sadeghi A ; Saidi, M. H ; Sharif University of Technology
    Abstract
    Consideration is given to the buoyancy effects on fully developed gaseous slip flow in vertical microducts of constant but arbitrary geometry. The thermal boundary condition is assumed to be the constant wall heat flux of the first kind, H1. The rarefaction effects are treated using the first-order slip velocity and temperature jump boundary conditions. The method of solution being considered, in which the governing equations in cylindrical coordinates and three of the boundary conditions are exactly satisfied, is mainly analytical. The remaining slip boundary conditions on the duct wall are applied to the solution through the least-squares matching method. As an application of the method,... 

    Experimental characterization of stabilized suspensions caused by formation of nanoparticle halos

    , Article ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2014, Collocated with the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting ; 2014 ; ISBN: 9780791846278 Keramati, H ; Zabetian, M ; Saidi, M. H ; Mozafari, A. A ; Sharif University of Technology
    Abstract
    Suspension flow has an important role in various applications such as paint, material and pharmaceutical industries. Settling is considered as a resisting phenomenon in the processes dealing with suspensions. Using nanoparticles as an additive to micro-particulates has been studied in limited studies. This work presents an experimental investigation to assess the effectiveness of nanoparticles in reduction of suspension settling. Microscopic imaging and transmission measurement were used to analyze the stability factors in a container. Transmission analysis revealed that presence of nanoparticles in the suspension, decreased the sedimentation rate. Microscopy showed that the settling rate... 

    Pressure effects on electroosmotic flow of power-law fluids in rectangular microchannels

    , Article Theoretical and Computational Fluid Dynamics ; Vol. 28, issue. 4 , 2014 , pp. 409-426 ; ISSN: 09354964 Vakili, M. A ; Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    Abstract
    In this paper, the fully developed electroosmotic flow of power-law fluids in rectangular microchannels in the presence of pressure gradient is analyzed. The electrical potential and momentum equations are numerically solved through a finite difference procedure for a non-uniform grid. A complete parametric study reveals that the pressure effects are more pronounced at higher values of the channel aspect ratio and smaller values of the flow behavior index. The Poiseuille number is found to be an increasing function of the channel aspect ratio for pressure assisted flow and a decreasing function of this parameter for pressure opposed flow. It is also observed that the Poiseuille number is... 

    Thickness optimization of polyurethane floor insulation based on analysis of the heat transfer in a multi-layer

    , Article ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis, ESDA 2014 ; Vol. 3, issue , 2014 Moosavi, A ; Saidi, M. H ; Reshadi, M ; Sharif University of Technology
    Abstract
    During the year, due to weather conditions, the temperature fluctuations at surface level cause problems in underground pipes as a result of freezing water. One of the best prevention strategies is the use of polyurethane floor insulation for keeping the temperature of clay above zero degrees Celsius. In this study to calculate the minimum thickness of polyurethane insulation layer, the differential equation of energy is solved based on principle of separation of variables using imaginary eigenvalues for consistency with the temperature distribution in multi-layer consist of asphalt, gravel and polyurethane with finite thickness and clay as a semiinfinite medium with periodic thermal... 

    Modeling of laser thermal and hydrodynamic effects on a dilute suspension of micro-particles in water

    , Article Journal of Mechanical Science and Technology ; Vol. 28, issue. 3 , 2014 , p. 1017-1026 Zabetian, M ; Saidi, M. H ; Saidi, M. S ; Shafii, M. B ; Sharif University of Technology
    Abstract
    Particle manipulation using laser beam is almost a new and contactless technique in particulate sciences. The method is based on the radiation pressure of light photons on the particles suspended in a semi-transparent fluid. Applications of the technique mainly cover microscopic separation and detection of biological objects. In this work, a theoretical study is conducted to investigate the hydrodynamic and thermal effects on a particulate flow in a mini-channel. Laser thermal effects are studied as a result of light absorption either in fluid or dispersed phase. An analytical model is developed to be the real simulator of a test bed developed by the authors. The main objective of performed... 

    CFD based optimization of the mixture formation in spark ignition direct injection CNG engine

    , Article Scientia Iranica ; Vol. 21, issue. 5 , 2014 , p. 1621-1634 Chitsaz, I ; Saidi, M. H ; Mozafari, A. A ; Sharif University of Technology
    Abstract
    This paper describes optimization of the combustion chamber geometry and injection timing of a new generation of EF7 engine, where CNG is directly injected to the combustion chamber, with the aim of providing the best mixture at low and high speeds. The Multi-Objective Genetic Algorithm (MOGA) is coupled with the KIVA Computational Fluid Dynamics (CFD) code, with grid generation, in order to maximize the flammable mass of the mixture. This would result in better combustion and improved fuel economy. The optimization variables related to the combustion chamber are seven geometry variables and injection timing. Through the present optimization, a great improvement in mixture distribution is... 

    Gaseous slip-flow mixed convection through ordered microcylinders

    , Article Journal of Thermophysics and Heat Transfer ; Vol. 28, issue. 1 , 2014 , p. 105-117 Sadeghi, M ; Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    Abstract
    The fully developed longitudinal slip-flow mixed convection between a periodic bunch of vertical microcylinders arrangedin regular arraysis investigated inthe present work. The two axially constant heat flux boundary conditions of H1 and H2 are considered in the analysis. The rarefaction effects are taken into consideration using first-order slip velocity and temperature jump boundary conditions. The method considered is mainly analytical, in that the governing equations and three of the boundary conditions are exactly satisfied. The remaining symmetry condition on the right-hand boundary of the typical element is applied to the solution through the point-matching technique. The results... 

    Thermal transport characteristics pertinent to electrokinetic flow of power-law fluids in rectangular microchannels

    , Article International Journal of Thermal Sciences ; Vol. 79, issue , 2014 , p. 76-89 Vakili, M. A ; Saidi, M. H ; Sadeghi, A ; Sharif University of Technology
    Abstract
    In the present study, the thermal characteristics of electroosmotic flow of power-law fluids in rectangular microchannels in the presence of pressure gradient are investigated. The governing equations for fully developed flow under H1 thermal boundary conditions are first made dimensionless and subsequently solved through a finite difference procedure for a non-uniform grid. The influence of the major parameters on thermal features of the flow such as the temperature distribution and Nusselt number is discussed by a complete parametric study. The results reveal that the channel aspect ratio and the non-Newtonian characteristic of the fluid can affect the thermal behavior of the flow. It is... 

    Particle dispersion dependency on the entrance position in bidirectional flow

    , Article Particulate Science and Technology ; Volume 31, Issue 6 , 2013 , Pages 576-584 ; 02726351 (ISSN) Dehghani, S. R ; Saidi, M. H ; Mozafari, A. A ; Soleimani, F ; Sharif University of Technology
    2013
    Abstract
    This article presents a process of numerically predicting and experimentally verifying the dispersion quality and penetration level of fuel particles entering and moving in various directions relative to vortex engine walls. If the length scale of particles considered in this study is not comparable to the chamber length and, furthermore, the density is ignored, the effect of the particle on the flow field can be neglected and a one-way solution will be viable for the problem. The solutions in each case are carried out to estimate the particle trajectory and parameters affecting it. The governing equations are converted to a set of nonlinear, coupled, ordinary differential equations (ODEs)... 

    Laminar falling film flow of aqueous Li Br solution on a horizontal elliptical tube

    , Article International Journal of Fluid Mechanics Research ; Volume 40, Issue 4 , 2013 , Pages 324-343 ; 10642277 (ISSN) Abyaneh, M. H. J ; Saidi, M. H ; Sharif University of Technology
    2013
    Abstract
    Flow hydrodynamics of laminar falling film of aqueous Li Br solution (Li Br - H2O) on a horizontal elliptical tube has been investigated in this research. The film velocity distribution and film thickness, namely, the flow characteristics are determined by solving analytically simultaneous simplified Navier - Stokes equations and continuity equation in polar and Cartesian coordinates. The analysis is based on steady state laminar flow of falling liquid film of Li Br - H2O on a horizontal elliptical tube in polar model and Cartesian model (CM), for cases in which traction on the film surface is considered negligible. Models are compared with each other in three cases of aspect ratios (Ar),...