Loading...
Search for: saidi--m--h
0.019 seconds
Total 225 records

    Visual technique for detection of gas-liquid two-phase flow regime in the airlift pump

    , Article Journal of Petroleum Science and Engineering ; Volume 75, Issue 3-4 , January , 2011 , Pages 327-335 ; 09204105 (ISSN) Hanafizadeh, P ; Ghanbarzadeh, S ; Saidi, M. H ; Sharif University of Technology
    Abstract
    Simplicity of manufacturing and high reliability of airlift pumps have promoted these pumps to be used in different industries, such as petrochemical and oil industries, especially in oil recovery from dead wells. One of the main parameters affecting the performance of these pumps is two-phase flow regime in the main pipe of the pump. In this research, experimental data are utilized to investigate the influence of the flow regimes on the performance of an airlift pump. The data are obtained for air-water two-phase flow in a vertical pipe with a diameter of d = 50. mm and an aspect ratio of L/d = 120. In this study, the gas liquid upward two-phase flow regime in the upriser pipe is... 

    Visualization and comparative investigations of pulsating ferro-fluid heat pipe

    , Article Applied Thermal Engineering ; Volume 116 , 2017 , Pages 56-65 ; 13594311 (ISSN) Gandomkar, A ; Saidi, M. H ; Shafii, M. B ; Vandadi, M ; Kalan, K ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Pulsating heat pipes (PHPs) are among the best solutions for the electronics cooling due to their low cost, effectiveness and being passive. Experiments to study the effective factors on heat transfer performance have been designed and as a result, improvement of ferrofluid PHP performance has been achieved. Two different heat pipes made of copper and glass were prepared to investigate the behavior of magnetic nanofluids. In order to find the best condition for heat transfer performance, different concentrations of nanofluid with a filling ratio of 50% were tested in 3 different cases of magnetic field. The results indicated that the ferrofluid is more stable in the glass PHP. It also shows... 

    Viscous dissipation effects on thermal transport characteristics of combined pressure and electroosmotically driven flow in microchannels

    , Article International Journal of Heat and Mass Transfer ; Volume 53, Issue 19-20 , 2010 , Pages 3782-3791 ; 00179310 (ISSN) Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    Abstract
    This study investigates the influence of viscous dissipation on thermal transport characteristics of the fully developed combined pressure and electroosmotically driven flow in parallel plate microchannels subject to uniform wall heat flux. Closed form expressions are obtained for the transverse distributions of electrical potential, velocity and temperature and also for Nusselt number. From the results it is realized that the Brinkman number has a significant effect on Nusselt number. Generally speaking, to increase Brinkman number is to decrease Nusselt number. Although the magnitude of Joule heating can affect Brinkman number dependency of Nusselt number, however the general trend remains... 

    Viscous dissipation and rarefaction effects on laminar forced convection in microchannels

    , Article Journal of Heat Transfer ; Volume 132, Issue 7 , 2010 , Pages 1-12 ; 00221481 (ISSN) Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    2010
    Abstract
    Fluid flow in microchannels has some characteristics, which one of them is rarefaction effect related with gas flow. In the present work, hydrodynamically and thermally fully developed laminar forced convection heat transfer of a rarefied gas flow in two microgeometries is studied, namely, microannulus and parallel plate microchannel. The rarefaction effects are taken into consideration using first-order slip velocity and temperature jump boundary conditions. Viscous heating is also included for either the wall heating or the wall cooling case. Closed form expressions are obtained for dimensionless temperature distribution and Nusselt number. The results demonstrate that for both geometries,... 

    Velocity distributions in (r,θ) directions for laminar flow of a film around horizontal circular tube

    , Article 2006 ASME Joint U.S.- European Fluids Engineering Division Summer Meeting, FEDSM2006, Miami, FL, 17 July 2006 through 20 July 2006 ; Volume 1 SYMPOSIA , 2006 , Pages 11-19 ; 0791847500 (ISBN); 9780791847503 (ISBN) Abyaneh, M. H. J ; Saidi, M. H ; Sharif University of Technology
    American Society of Mechanical Engineers  2006
    Abstract
    Velocity distributions in (r,θ) directions are evaluated by solving simultaneous simplified Navier-Stokes equations (NSE) and continuity equation (CE) in polar coordinate. The analysis is based on steady state laminar flow of thin falling liquid film on a horizontal circular tube, for cases in which traction on the film surface is considered negligible. It is a common geometry for part of engineering problems such as evaporator, condenser, absorber, generator of absorption chillers and other similar units in mechanical and chemical engineering. Knowledge of the velocity profiles is usually needed for: 1 - solving governing energy and species equations 2- estimating the average and film... 

    Velocity distributions in (r,θ) directions for laminar flow of a film around horizontal circular tube

    , Article 2006 2nd ASME Joint U.S.-European Fluids Engineering Summer Meeting, FEDSM 2006, Miami, FL, 17 July 2006 through 20 July 2006 ; Volume 2006 , 2006 ; 0791837831 (ISBN); 9780791837832 (ISBN) Abyaneh, M. H. J ; Saidi, M. H ; Sharif University of Technology
    2006
    Abstract
    Velocity distributions in (r,θ) directions are evaluated by solving simultaneous simplified Navier-Stokes equations (NSE) and continuity equation (CE) in polar coordinate. The analysis is based on steady state laminar flow of thin falling liquid film on a horizontal circular tube, for cases in which traction on the film surface is considered negligible. It is a common geometry for part of engineering problems such as evaporator, condenser, absorber, generator of absorption chillers and other similar units in mechanical and chemical engineering. Knowledge of the velocity profiles is usually needed for: 1- solving governing energy and species equations 2- estimating the average and film... 

    Variational formulation on Joule heating in combined electroosmotic and pressure driven microflows

    , Article International Journal of Heat and Mass Transfer ; Volume 61, Issue 1 , June , 2013 , Pages 254-265 ; 00179310 (ISSN) Sadeghi, A ; Saidi, M. H ; Waezi, Z ; Chakraborty, S ; Sharif University of Technology
    2013
    Abstract
    The present study attempts to analyze the extended Graetz problem in combined electroosmotic and pressure driven flows in rectangular microchannels, by employing a variational formulation. Both the Joule heating and axial conduction effects are taken into consideration. Since assuming a uniform inlet temperature profile is not consistent with the existence of these effects, a step change in wall temperature is considered to represent physically conceivable thermal entrance conditions. The method of analysis considered here is primarily analytical, in which series solutions are presented for the electrical potential, velocity, and temperature. For general treatment of the eigenvalue problem... 

    Unsteady solute dispersion by electrokinetic flow in a polyelectrolyte layer-grafted rectangular microchannel with wall absorption

    , Article Journal of Fluid Mechanics ; Volume 887 , 2020 Sadeghi, M ; Saidi, M. H ; Moosavi, A ; Sadeghi, A ; Sharif University of Technology
    Cambridge University Press  2020
    Abstract
    The dispersion of a neutral solute band by electrokinetic flow in polyelectrolyte layer (PEL)-grafted rectangular/slit microchannels is theoretically studied. The flow is assumed to be both steady and fully developed and a first-order irreversible reaction is considered at the wall to account for probable surface adsorption of solutes. Considering low electric potentials, analytical solutions are obtained for electric potential, fluid velocity and solute concentration. Special solutions are also obtained for the case without wall adsorption. To track the dispersion properties of the solute band, the generalized dispersion model is adopted by considering the exchange, the convection and the... 

    Two phase gas-liquid bubbly flow modeling in vertical mini pipe

    , Article 2010 14th International Heat Transfer Conference, IHTC 14, 8 August 2010 through 13 August 2010 ; Volume 3 , 2010 , Pages 947-956 ; 9780791849385 (ISBN) Kebriaee, M. H ; Karabi, H ; Khorsandi, S ; Saidi, M. H ; Heat Transfer Division ; Sharif University of Technology
    Abstract
    Studies on two-phase flow in small scale pipes have become more important, because of the application of mini-scale devices in several engineering fields including, high heat-flux compact heat exchangers, and cooling systems of various types of equipment. In a mini pipe the behavior of two phase flow is not the same as flow in conventional pipes. The difference is caused by different effective forces; for e. g. inside a mini pipe capillary forces are more important in comparison with gravitational forces. This paper is devoted to numerical simulation of gas-liquid two phase flow in a vertical mini pipe. Prediction of bubble shape and the effects of gas and liquid velocities on flow... 

    Two-dimensional numerical investigation of a micro combustor

    , Article Scientia Iranica ; Volume 17, Issue 6 B , December , 2010 , Pages 433-442 ; 10263098 (ISSN) Irani Rahaghi, A ; Saidi, M. S ; Saidi, M. H ; Shafii, M. B ; Sharif University of Technology
    2010
    Abstract
    In this paper, a two-dimensional numerical approach is used to study the effect of micro combustor height, mass flow rate and external convection heat transfer coefficient on the temperature and species mass fraction profiles. A premixed mixture of H2-Air with a multi-step chemistry is used. The transient gas phase energy and species conservation equations result in an Advection-Diffusion-Reaction system that leads to two stiff systems of PDEs. In the present work, the computational domain is solved through the Strang splitting method, which is suitable for a nonlinear stiff system of PDEs. A revised boundary condition for the velocity equation is applied and its effect on the flow... 

    Turbulent decaying swirling flow in a pipe

    , Article Heat Transfer Research ; Volume 49, Issue 16 , 2018 , Pages 1559-1585 ; 10642285 (ISSN) Aghakashi, V ; Saidi, M. H ; Sharif University of Technology
    Begell House Inc  2018
    Abstract
    In this work, a solution is applied to investigate the heat transfer characteristics in a pipe with turbulent decaying swirling flow by using the boundary layer integral scheme. The governing equation is solved using the forth-order Runge-Kutta scheme resulting in thermal boundary-layer thickness and dimensionless heat transfer coefficient, namely, the Nusselt number. Both forced- and free-vortex profiles are considered for the tangential velocity component. A comparison of the results obtained for the Nusselt number with available experimental data shows that this scheme has good capability in predicting the heat transfer parameters of swirling flow especially in the entrance region of a... 

    Tuning the dispersion of reactive solute by steady and oscillatory electroosmotic-Poiseuille flows in polyelectrolyte-grafted micro/nanotubes

    , Article Journal of Fluid Mechanics ; 2019 , Pages 73-112 ; 00221120 (ISSN) Reshadi, M ; Saidi, M. H ; Sharif University of Technology
    Cambridge University Press  2019
    Abstract
    This paper extends the analysis of solute dispersion in electrohydrodynamic flows to the case of band broadening in polyelectrolyte-grafted (soft) capillaries by accounting for the effects of ion partitioning, irreversible catalytic reaction and pulsatile flow actuation. In the Debye-Hückel limit, we present the benchmark solutions of electric potential and velocity distribution pertinent to steady and oscillatory mixed electroosmotic-pressure-driven flows in soft capillaries. Afterwards, the mathematical models of band broadening based on the Taylor-Aris theory and generalized dispersion method are presented to investigate the late-time asymptotic state and all-time evolution of... 

    Tuning the dispersion of reactive solute by steady and oscillatory electroosmotic-Poiseuille flows in polyelectrolyte-grafted micro/nanotubes

    , Article Journal of Fluid Mechanics ; 2019 , Pages 73-112 ; 00221120 (ISSN) Reshadi, M ; Saidi, M. H ; Sharif University of Technology
    Cambridge University Press  2019
    Abstract
    This paper extends the analysis of solute dispersion in electrohydrodynamic flows to the case of band broadening in polyelectrolyte-grafted (soft) capillaries by accounting for the effects of ion partitioning, irreversible catalytic reaction and pulsatile flow actuation. In the Debye-Hückel limit, we present the benchmark solutions of electric potential and velocity distribution pertinent to steady and oscillatory mixed electroosmotic-pressure-driven flows in soft capillaries. Afterwards, the mathematical models of band broadening based on the Taylor-Aris theory and generalized dispersion method are presented to investigate the late-time asymptotic state and all-time evolution of... 

    Tuning electrokinetic flow, ionic conductance, and selectivity in a solid-state nanopore modified with a pH-responsive polyelectrolyte brush: A molecular theory approach

    , Article Journal of Physical Chemistry C ; Volume 124, Issue 34 , 2020 , Pages 18513-18531 Sadeghi, M ; Saidi, M. H ; Moosavi, A ; Kröger, M ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    We use an efficient molecular theory approach to study electrokinetic flow within a pH-responsive nanopore grafted with a polyelectrolyte (PE) brush. The flow rate, migration and convective conductance, electric potential and velocity fields, species distributions and the degree of ionization of the weak PE functional groups and nanopore selectivity are obtained and interpreted while considering pH-induced surface charges. The theory is generally based on writing the overall free energy of the system including the entropies arising from the conformations of flexible, excluded volume chains, the mixing of mobile species, electrostatic contribution, and the free energy due to the chemical... 

    Tube bundle heat and mass transfer characteristics in falling film absorption generators

    , Article International Communications in Heat and Mass Transfer ; Volume 30, Issue 4 , 2003 , Pages 565-576 ; 07351933 (ISSN) Jani, S ; Saidi, M. H ; Mozaffari, A. A ; Sharif University of Technology
    2003
    Abstract
    Falling film heat and mass transfer analysis of a horizontal tube bundle in a generator of absorption chillers have been studied. The film Reynolds number is limited to the laminar flow and the effect of ripple on the free surface has been ignored. Thermal boundary conditions are considered to be constant wall temperature and desorption is considered to be free surface evaporation. Analysis is based on a single column of horizontal tubes, arranged in a vertically spaced configuration. A comprehensive numerical code has been developed to solved the governing equations. The functional relationship of average heat transfer coefficient of tube bundle has been analytically correlated to the first... 

    Transportation and Settling Distribution of Microparticles in Low-Reynolds-Number Poiseuille Flow in Microchannel

    , Article Journal of Dispersion Science and Technology ; Volume 37, Issue 4 , 2016 , Pages 582-594 ; 01932691 (ISSN) Razaghi, R ; Saidi, M. H ; Sharif University of Technology
    Taylor and Francis Inc 
    Abstract
    In this article, velocity field and settling distribution of microparticles in a dilute suspension in low-Reynolds-number Poiseuille flow in a microchannel is experimentally investigated using microscopic image analysis. An effective technique is applied to manipulate single-particle tracking in order to determine the controlling parameters on transportation and settling of microparticles in microchannels. The results show that the velocities of dispersed phase are affected by the hydrodynamic properties, and this velocity deviation can be significant when the hydrodynamic coupling between particles and channel walls is considerable. Increasing the Reynolds number would result in decrease in... 

    Time-average drag coefficient and void fraction in gas-liquid two phase flow

    , Article Proceedings of the ASME Fluids Engineering Division Summer Conference 2009, FEDSM2009, 2 August 2009 through 6 August 2009, Vail, CO ; Volume 1, Issue PART B , 2009 , Pages 1083-1094 ; 9780791843727 (ISBN) Ghanbarzadeh, S ; Hanafizadeh, P ; Saidi, M. H ; Sharif University of Technology
    Abstract
    Two-phase flow simulations around a body were not studied before and considering these flows can play a significant role in long-term reliability and safety of industrial systems. In this paper, flow regimes, drag coefficient and void fraction around different cross-section prisms were considered. To achieve this aim, main equations of flow have been developed for investigation of drag coefficient in air-water two phase. Our numerical analyses were performed by a designed and written CFD package which is based on Eulerian-Eulerian approach. Geometries, which have been studied in this article, are: circle, rectangle and triangle, for different aspect ratio (length over width) and leading edge... 

    Three-dimensional analysis of fluid flow and heat transfer in the microchannel heat sink using additive-correction multigrid technique

    , Article 1st ASME Micro/Nanoscale Heat Transfer International Conference, MNHT08, Tainan, 6 January 2008 through 9 January 2008 ; Volume Parts A and B , 2008 , Pages 679-689 ; 0791842924 (ISBN); 9780791842928 (ISBN) Asgari, O ; Saidi, M. H ; Sharif University of Technology
    2008
    Abstract
    Heat generation from very large-scale integrated (VLSI) circuits increases with the advent of high-density integrated circuit technology. One of the promising techniques is liquid cooling by using microchannel heat sink. Numerical works on the microchannel heat sink in the literature are mostly two dimensional. The purpose of the present study is to develop a three-dimensional analysis procedure to investigate flow and conjugate heat transfer in the microchannel-based heat sink for electronic packaging applications. The micro-heat sink model consists of a 10 mm long silicon substrate, with rectangular microchannels, 57 μm wide and 180 μm deep, fabricated along the entire length. A finite... 

    Thickness optimization of polyurethane floor insulation based on analysis of the heat transfer in a multi-layer

    , Article ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis, ESDA 2014 ; Vol. 3, issue , 2014 Moosavi, A ; Saidi, M. H ; Reshadi, M ; Sharif University of Technology
    Abstract
    During the year, due to weather conditions, the temperature fluctuations at surface level cause problems in underground pipes as a result of freezing water. One of the best prevention strategies is the use of polyurethane floor insulation for keeping the temperature of clay above zero degrees Celsius. In this study to calculate the minimum thickness of polyurethane insulation layer, the differential equation of energy is solved based on principle of separation of variables using imaginary eigenvalues for consistency with the temperature distribution in multi-layer consist of asphalt, gravel and polyurethane with finite thickness and clay as a semiinfinite medium with periodic thermal... 

    The step effect and particle removal from an enclosure

    , Article 8th Biennial ASME Conference on Engineering Systems Design and Analysis, ESDA2006, Torino, 4 July 2006 through 7 July 2006 ; Volume 2006 , 2006 ; 0791837793 (ISBN); 9780791837795 (ISBN) Hendijanifard, M ; Saidi, M. H ; Taeibi Rahni, M ; Sharif University of Technology
    American Society of Mechanical Engineers  2006
    Abstract
    This paper reports the results of a study of the transient removal of contaminant particle from enclosures containing an obstacle. We study specially a phenomena occur sometimes called the step effect. This phenomenon may occur if the size of the obstacle is small enough in comparison with the length or height of the enclosure. These results are the basic instruments for finding a model for contaminant particle removal from an enclosure containing an obstacle. A numerical CFD code is developed and validated with different cases, and then proper two- and three-dimensional cases are modeled. The size of the obstacle affect the order of magnitude of the convection-diffusion terms in the...