Loading...
Search for: solution-concentration
0.012 seconds
Total 31 records

    Contribution of fouling and gel polarization during ultrafiltration of raw apple juice at industrial scale

    , Article Desalination ; Volume 258, Issue 1-3 , 2010 , Pages 194-200 ; 00119164 (ISSN) Yazdanshenas, M ; Tabatabaee Nezhad, S. A. R ; Soltanieh, M ; Roostaazad, R ; Khoshfetrat, A. B ; Sharif University of Technology
    2010
    Abstract
    The flux behavior during the industrial cross-flow ultrafiltration of apple juice in a batch process was modeled using a combination of the fouling and concentration polarization models. It was observed that the major flux reduction was at the beginning and at the end of operation due to fouling and increasing solute concentration in the feed tank, respectively. The fouling phenomenon was analyzed by classical and empirical models and it was shown that the empirical one has the best correlation within less than 0.3% error for each experiment. The most significant advantage of this model is its ability to predict a steady flux, while other models predict zero flux at infinite time, which is... 

    Optical concentration of gold nanoparticles as a new concept of analytical sensitivity

    , Article Instrumentation Science and Technology ; 2020 Vaziri Heshi, S ; Shokoufi, N ; Seyed Reihani, S. N ; Sharif University of Technology
    Bellwether Publishing, Ltd  2020
    Abstract
    Concentration procedures have always been implemented when trace analysis of compounds in real matrices is contemplated. A variety of concentration strategies have been reported aiming at decreasing the limits of detection (LODs). The optical concentration of the substance in solution is one of the novel concepts for the enhancement of the analytical sensitivity. In this study, the optical concentration has been measured by the trapping of gold nanoparticles ((Formula presented.) nm) dispersed in water at low-concentrations at the focal volume of the laser beam. The influence of factors such as the time of gold nanoparticle trapping, the size of the nanoparticles, the intensity of the laser... 

    Porous gelatin/poly(ethylene glycol) scaffolds for skin cells

    , Article Soft Materials ; Volume 15, Issue 1 , 2017 , Pages 95-102 ; 1539445X (ISSN) Vahidi, M ; Frounchi, M ; Dadbin, S ; Sharif University of Technology
    Abstract
    Biocompatible porous polymeric scaffolds provide a suitable environment for proliferation of stem cells in human body. In this research work, porous gelatin–poly(ethylene glycol), PEG, based scaffolds were prepared using combination of freeze-gelation and freeze-extraction methods. Effects of various parameters such as freezing temperature, cross-linking agent, concentrations of gelatin and PEG and their blending ratio on physical and mechanical properties, swelling ratio, porosity, pore size, and degradation rate of scaffolds were investigated. Also, proliferation of fibroblast skin cells on the scaffolds was examined by MTS assay to assess the suitability of the scaffolds in wound healing... 

    Calculation of the additional constants for fcc materials in second strain gradient elasticity: Behavior of a nano-size bernoulli-euler beam with surface effects

    , Article Journal of Applied Mechanics, Transactions ASME ; Volume 79, Issue 2 , 2012 ; 00218936 (ISSN) Shodja, H. M ; Ahmadpoor, F ; Tehranchi, A ; Sharif University of Technology
    2012
    Abstract
    In addition to enhancement of the results near the point of application of a concentrated load in the vicinity of nano-size defects, capturing surface effects in small structures, in the framework of second strain gradient elasticity is of particular interest. In this framework, sixteen additional material constants are revealed, incorporating the role of atomic structures of the elastic solid. In this work, the analytical formulations of these constants corresponding to fee metals are given in terms of the parameters of Sutton-Chen interatomic potential function. The constants for ten fcc metals are computed and tabulized. Moreover, the exact closed-form solution of the bending of a... 

    Hysteresis of soil water retention and shrinkage behaviour for various salt concentrations

    , Article Geotechnique Letters ; Volume 11, Issue 1 , 2021 , Pages 21-29 ; 20452543 (ISSN) Sadeghi, H ; Nasiri, H ; Sharif University of Technology
    ICE Publishing  2021
    Abstract
    Laboratory investigation on the influence of solute concentration on the soil water-retention curve (SWRC) and volumetric behaviour of expansive soils has received much attention in recent years due to increasing environmental pollution. However, most studies only considered applying wetting or drying path with almost no attention to hydraulic hysteresis. Furthermore, these studies have focused on examining expansive soils and only marginal effort has been devoted to collapsible soils. Therefore, the main objective of this study is to systematically explore the SWRC and shrinkage characteristics of an artificially made collapsible soil at various molar concentrations. The tests were... 

    Polyvinyl alcohol and polyvinyl alcohol/ polyvinyl pyrrolidone biomedical foams crosslinked by gamma irradiation

    , Article Journal of Cellular Plastics ; Volume 53, Issue 4 , 2017 , Pages 359-372 ; 0021955X (ISSN) Sabourian, P ; Frounchi, M ; Dadbin, S ; Sharif University of Technology
    SAGE Publications Ltd  2017
    Abstract
    Foams for biomedical applications were made from polyvinyl alcohol, polyvinyl alcohol / polyvinyl pyrrolidone blend and their nanocomposites with nanoclay by clean processes. Air was entrapped into the aqueous polymer solutions during vigorous mixing and then the solutions were freeze-dried. The foams structure was stabilized by crosslinking via gamma irradiation without using any harmful chemicals. The hydrophilic biocompatible foams possessed interconnected open cell structure with remarkable capacity to absorb and retain water. The foams in wet state were soft and flexible. Desirable pore structure and higher water absorption was obtained at a solution concentration of 5 wt% for both... 

    A comprehensive review on ultrasonic spray pyrolysis technique: Mechanism, main parameters and applications in condensed matter

    , Article Journal of Analytical and Applied Pyrolysis ; Volume 141 , 2019 ; 01652370 (ISSN) Rahemi Ardekani, S ; Sabour Rouh Aghdam, A ; Nazari, M ; Bayat, A ; Yazdani, E ; Saievar Iranizad, E ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Nanostructured materials have attracted much attention in recent decades. Nowadays, there are numerous nanomaterials with several applications. The ultrasonic spray pyrolysis method is a cost-effective and adaptable technique based on an aerosol process for synthesizing nanoparticles and depositing thin films. The technique is capable of synthesizing metal, oxide, and composite nanomaterials with precisely controllable morphologies and chemical compositions using metal salts in aqueous solvents. More importantly, it is popular, as evident from the growing number of studies being conducted on the technique. Here, we review studies conducted on basic principles and applications of the... 

    The Effects of Various Parameters on Wellbore Stability During Drilling Through Shale Formations

    , Article Petroleum Science and Technology ; Volume 33, Issue 12 , 2015 , Pages 1275-1285 ; 10916466 (ISSN) Rafieepour, S ; Ghotbi, C ; Pishvaie, M. R ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    Field evidence indicates that the thermal and chemical regimes in wellbore considerably affect the wellbore stability. This study presents a general coupled model for transport of solute, solvent and heat including their combined effects on the wellbore stability. Optimization of drilling fluid parameters is crucial for wellbore stability analysis particularly in high pressure-high temperature environments. The coupled effects of chemical potential and temperature gradients on fluid flow significantly change the pore pressure and stress around a borehole. The effects of various parameters such as mud weight, solute concentration gradient, shale properties, and temperature gradient on... 

    Partially hydrolyzed crosslinked alginate-graff-polymethacrylamide as a novel biopolymer-based superabsorbent hydrogel having pH-responsive properties

    , Article Macromolecular Research ; Volume 13, Issue 1 , 2005 , Pages 45-53 ; 15985032 (ISSN) Pourjavadi, A ; Amini Fazl, M. S ; Hosseinzadeh, H ; Sharif University of Technology
    Polymer Society of Korea  2005
    Abstract
    In this study, a series of highly swelling hydrogels based on sodium alginate (NaAlg) and polymethacrylamide (PMAM) was prepared through free radical polymerization. The graft copolymerization reaction was performed in a homogeneous medium and in the presence of ammonium persulfate (APS) as an initiator and N,N'-methylenebisacrylamide (MBA) as a crosslinker. The crosslinked graft copolymer, alginate-graft-polymethacrylamide (Alg-g-PMAM), was then partially hydrolyzed by NaOH solution to yield a hydrogel, hydrolyzed alginate-graft-polymethacrylamide (H-Alg-g-PMAM). During alkaline hydrolysis, the carboxamide groups of Alg-g-PMAM were converted into hydrophilic carboxylate anions. Either the... 

    On the inability of the moving interface model to predict isothermal solidification time during transient liquid phase (TLP) bonding of ni-based superalloys

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 53, Issue 1 , 2022 , Pages 126-135 ; 10735623 (ISSN) Pouranvari, M ; Ghasemi, A ; Salmasi, A ; Sharif University of Technology
    Springer  2022
    Abstract
    Understanding diffusion-induced isothermal solidification time during transient liquid phase bonding is vital in producing intermetallic-free robust joints. The isothermal solidification completion time is overestimated by the existing analytical models, even by the closest one to the real bonding conditions, known as the moving interface model. It was found that the boride formation in the diffusion affected zone of Ni-based superalloy upon using B-containing filler metals is one of the reasons behind the inability of the moving interface model to predict the isothermal solidification completion time accurately, which has received scant attention in the literature. Moreover, simplified... 

    Simulation of Si concentration effect on the permeability for columnar dendrite structures during solidification of Al-Si alloy

    , Article Materials and Design ; Volume 28, Issue 1 , 2007 , Pages 356-361 ; 02613069 (ISSN) Mirbagheri, S. M. H ; Silk, J ; Sharif University of Technology
    Elsevier Ltd  2007
    Abstract
    A numerical model has been developed for the determination of liquid flow permeability through columnar dendrite during growth and segregation in Al-Si mushy alloys. The model is inclusive of two stages, first numerical evolution of the dendrite shape during growth, and second numerical determination of the permeability. Simulation results shown which Si concentration by transform of dendrite shape dendrite could reduce of the interdendritic liquid permeability. © 2005 Elsevier Ltd. All rights reserved  

    3D simulation of solutes concentration in urinary concentration mechanism in rat renal medulla

    , Article Mathematical Biosciences ; Volume 308 , 2019 , Pages 59-69 ; 00255564 (ISSN) Mahdavi, S. S ; Abdekhodaie, M. J ; Farhadi, F ; Shafiee, M. A ; Sharif University of Technology
    Elsevier Inc  2019
    Abstract
    In this work, a mathematical model was developed to simulate the urinary concentration mechanism. A 3-D geometry was derived based on the detail physiological pictures of rat kidney. The approximate region of each tubule was obtained from the volume distribution of structures based on Walter Pfaller's monograph and Layton's region-based model. Mass and momentum balances were applied to solve for the change in solutes concentration and osmolality. The osmolality of short and long descending nephrons at the end of the outer medulla was obtained to be 530 mOsmol/kgH2O and 802 mOsmol/kgH2O, respectively, which were in acceptable agreement with experimental data. The fluid osmolality of the short... 

    Theoretical study of diffusional release of a dispersed solute from a hollow cylindrical polymeric matrix

    , Article Scientia Iranica ; Volume 28, Issue 3 , 2021 , Pages 1428-1435 ; 10263098 (ISSN) Jooybar, E ; Tajsoleiman, T ; Abdekhodaie, M. J ; Sharif University of Technology
    Sharif University of Technology  2021
    Abstract
    The present study proposes an exact solution for the release kinetic of a solute from inside a hollow cylindrical polymeric matrix into an infinite medium when the initial concentration of the solute (A) is greater than the solubility limit (Cs). A combination of analytical and numerical methods was used to calculate the solute concentration profile and the release rate. The model was developed for two different conditions including: (1) The release medium was flowing through the hollow cylinder in which the boundary layer may be neglected, and (2) The release medium inside the hollow cylinder was stagnant where the boundary layer needed to be considered. The results indicated that the... 

    Solute dispersion by electroosmotic flow through soft microchannels

    , Article Sensors and Actuators, B: Chemical ; Volume 255, Part 3 , February , 2018 , Pages 3585-3600 ; 09254005 (ISSN) Hoshyargar, V ; Khorami, A ; Ashrafizadeh, S. N ; Sadeghi, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    We study the hydrodynamic dispersion (HD) by electroosmotic flow in soft microchannels. Considering a fully developed flow in a slit microchannel of low surface potential and adopting the Taylor dispersion theory, we derive analytical solutions for the solute concentration field and the effective dispersion coefficient. We also conduct numerical analyses to broaden the paper's scope to high surface potentials and to specify a criterion for the validity of the Debye-Hückel linearization in soft microconduits as well as to investigate the broadening of an analyte band from the time of injection. It is demonstrated that the effective dispersion coefficient of a neutral solute band is generally... 

    Hydrodynamic dispersion by electroosmotic flow of viscoelastic fluids within a slit microchannel

    , Article Microfluidics and Nanofluidics ; Volume 22, Issue 1 , January , 2018 ; 16134982 (ISSN) Hoshyargar, V ; Talebi, M ; Ashrafizadeh, S. N ; Sadeghi, A ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    The biofluids being manipulated in lab-on-a-chip devices usually contain elastic macromolecules. Accordingly, for an accurate modeling of the relevant flow physics one should invoke viscoelastic constitutive equations. In this paper, attention is paid toward the hydrodynamic dispersion by the fully developed electroosmotic flow of PTT viscoelastic fluids in slit microchannels of low zeta potential. Adopting the Taylor–Aris approach, analytical solutions are derived for late-time solute concentration and effective dispersion coefficient. Finite element-based numerical simulations are also conducted to monitor the broadening of an analyte band from the moment of injection. Both approaches are... 

    Semi-empirical modelling of hydraulic conductivity of clayey soils exposed to deionized and saline environments

    , Article Journal of Contaminant Hydrology ; Volume 249 , 2022 ; 01697722 (ISSN) Hedayati Azar, A ; Sadeghi, H ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Clay liners are widely used as porous membrane barriers to control solute transport and to prevent the leakage of leachate both in horizontal and vertical flow scenarios, such as the isolated base and ramps of sanitary landfills. Despite the primary importance of saturated hydraulic conductivity in a reliable simulation of fluid flow through clay barriers, there is no model to predict hydraulic conductivity of clayey soils permeated with saline aqueous solutions because most of the current models were developed for pure water. Therefore, the main motivation behind this study is to derive semi-empirical models for simulating the hydraulic conductivity of clayey soils in the presence of... 

    Investigation of precursors concentration in spray solution on the optoelectronic properties of CuInSe2 thin films deposited by spray pyrolysis method

    , Article Journal of Materials Science: Materials in Electronics ; 2020 Hashemi, M ; Ghorashi, S. M. B ; Tajabadi, F ; Taghavinia, N ; Sharif University of Technology
    Springer  2020
    Abstract
    Copper indium selenide CuInSe2(CISe) thin films were deposited by chemical spray pyrolysis (CSP) method of CuInS2(CIS) and subsequent selenization process. To study the effects of solution concentration, we prepared different precursors solution of CIS including different amount of indium salts from 0.025 to 0.100 M with In/Cu 1.25 and S/In 4. These results propose that solution concentration is critical for inflecting the morphological, optical, electrical, and electrochemical characteristics of solution-processed CISe films and device performance. The studied morphological properties of deposited samples were homogenous, crack-free with large grains in indium salt concentrations more than... 

    Investigation of precursors concentration in spray solution on the optoelectronic properties of CuInSe2 thin films deposited by spray pyrolysis method

    , Article Journal of Materials Science: Materials in Electronics ; Volume 32, Issue 21 , 2021 , Pages 25748-25757 ; 09574522 (ISSN) Hashemi, M ; Ghorashi, S. M. B ; Tajabadi, F ; Taghavinia, N ; Sharif University of Technology
    Springer  2021
    Abstract
    Copper indium selenide CuInSe2(CISe) thin films were deposited by chemical spray pyrolysis (CSP) method of CuInS2(CIS) and subsequent selenization process. To study the effects of solution concentration, we prepared different precursors solution of CIS including different amount of indium salts from 0.025 to 0.100 M with In/Cu 1.25 and S/In 4. These results propose that solution concentration is critical for inflecting the morphological, optical, electrical, and electrochemical characteristics of solution-processed CISe films and device performance. The studied morphological properties of deposited samples were homogenous, crack-free with large grains in indium salt concentrations more than... 

    Polyamide/polyacrylonitrile thin film composites as forward osmosis membranes

    , Article Journal of Applied Polymer Science ; Volume 133, Issue 42 , 2016 ; 00218995 (ISSN) Hajighahremanzadeh, P ; Abbaszadeh, M ; Mousavi, S. A ; Soltanieh, M ; Bakhshi, H ; Sharif University of Technology
    John Wiley and Sons Inc 
    Abstract
    Thin film composites (TFCs) as forward osmosis (FO) membranes for seawater desalination application were prepared. For this purpose, polyacrylonitrile (PAN) as a moderately hydrophilic polymer was used to fabricate support membranes via nonsolvent-induced phase inversion. A selective thin polyamide (PA) film was then formed on the top of PAN membranes via interfacial polymerization reaction of m-phenylenediamine and trimesoyl chloride (TMC). The effects of PAN solution concentration, solvent mixture, and coagulation bath temperature on the morphology, water permeability, and FO performance of the membranes and composites were studied. Support membranes based on low PAN concentrations (7 wt... 

    Computational-based approach for predicting porosity of electrospun nanofiber mats using response surface methodology and artificial neural network methods

    , Article Journal of Macromolecular Science, Part B: Physics ; Volume 54, Issue 11 , 2015 , Pages 1404-1425 ; 00222348 (ISSN) Hadavi Moghadam, B ; Khodaparast Haghi, A ; Kasaei, S ; Hasanzadeh, M ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    Comparative studies between response surface methodology (RSM) and artificial neural network (ANN) methods to find the effects of electrospinning parameters on the porosity of nanofiber mats is described. The four important electrospinning parameters studied included solution concentration (wt.%), applied voltage (kV), spinning distance (cm) and volume flow rate (mL/h). It was found that the applied voltage and solution concentration are the two critical parameters affecting the porosity of the nanofiber mats. The two approaches were compared for their modeling and optimization capabilities with the modeling capability of RSM showing superiority over ANN, having comparatively lower values of...