Loading...
Search for: thermoelectric-equipment
0.014 seconds
Total 51 records

    Wind speed sensor calibration in thermal power plant using Bayesian inference

    , Article Case Studies in Thermal Engineering ; Volume 19 , June , 2020 Mokhtari, A ; Ghodrat, M ; Javadpoor Langroodi, P ; Shahrian, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Using natural draft dry air cooling systems in the power plant cycle is one of the proposed solutions for less water consumption. But the wind blowing will cause decreasement of cooling system performance in the power plants that work with the Rankin cycle. Therefore, it is important to know the right amount of wind speed to make the right decision to prevent reducing generating power or provide the right solution to improve the performance of the power plant cooling system. There are many methods of calibration of sensors in the world. But using optimization techniques or stochastic methods that do not require physical facilities and additional costs is almost a new approach. Therefore, in... 

    Water-energy nexus approach for optimal design of hybrid cooling system in direct reduction of iron plant

    , Article Journal of Cleaner Production ; Volume 287 , 2021 ; 09596526 (ISSN) Hashemi Beni, M ; Morad Bazofti, M ; Akbari Mohammadi, A ; Mokhtari, H ; Saboohi, Y ; Golkar, B ; Ghandi, A. H ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Direct reduction of iron process in steel industry has special production conditions. Low quality cooling water, low cold and high hot cooling water temperature, space limitation for new equipment installation, high value-added of product and severe effect of cooling water temperature on production rate are of these conditions. Considering technical and economic constraints and limitations, this situation makes this process an attractive case study for converting the existing wet cooling tower to hybrid cooling system. In this paper, based on integration of process, dry and wet cooling system and ambient conditions profiles, a new method for designing hybrid cooling system has been proposed.... 

    The study of air-cooled condenser in high wind velocity and environmental temperature conditions

    , Article 52nd AIAA Aerospace Sciences Meeting - AIAA Science and Technology Forum and Exposition, SciTech 2014 ; 2014 ; ISBN: 9781624102561 Darbandi, M ; Behrouzifar, A ; Salemkar, H ; Schneider, G. E ; Sharif University of Technology
    Abstract
    The use of air-cooled condenser (ACC) has become very popular in erecting thermal powerplants around the world since two or three decades ago. The advantages of forced convection heat cooling system, instead of the classical natural draught convection heat transfer cooling systems, promote the thermal powerplant designers and users to benefit more from such systems in their thermodynamics cycles. However, such forced convection heat transfer mechanisms, can lose their cooling efficiency in off-design ambient conditions, i.e., in high wind velocity and high ambient temperature conditions. There have already been some efforts to analyze the reduction of ACC System performance in some critical... 

    Thermal analysis and optimization of a system for water harvesting from humid air using thermoelectric coolers

    , Article Energy Conversion and Management ; Volume 174 , 2018 , Pages 417-429 ; 01968904 (ISSN) Eslami, M ; Tajeddini, F ; Etaati, N ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Condensation of water vapor available in atmospheric air can be considered as a solution for water scarcity problem. In this paper, a comprehensive thermodynamic analysis of water production from humid air using thermoelectric coolers (TECs) is presented. The system consists of a number of thermoelectric coolers, a fan to supply the required air flow circulation, two cold and hot air channels, heat sinks and solar cells for powering the thermoelectric coolers and fan. Effects of various design parameters are investigated and discussed. The proposed design is optimized to get the maximum effectiveness which is defined as the amount of produced water per unit of energy consumption. Sensitivity... 

    The impacts of utilizing nano-encapsulated PCM along with RGO nanosheets in a pulsating heat pipe, a comparative study

    , Article International Journal of Energy Research ; Volume 45, Issue 13 , 2021 , Pages 19481-19499 ; 0363907X (ISSN) Mohammadi, O ; Shafii, M. B ; Rezaee Shirin Abadi, A ; Heydarian, R ; Ahmadi, M. H ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    Heat pipes are useful devices in heat transfer and particularly, in cooling systems. Given the high demand for cooling systems in various applications, an improvement in the performance of heat pipes has gained much attraction in recent years. In this study, the effects of utilizing working fluids with different thermal properties on the performance of pulsating heat pipes (PHP) are experimentally studied. Hence, nano-encapsulated phase change material (NPCM), reduced graphene oxide nanosheets, and their mixture, as a novel hybrid nanofluid, are prepared and dispersed in water as a working fluid. NPCM at 3 concentrations of 5, 10, and 20 g/L, as well as nanosheets at three concentrations of... 

    Reliability evaluation of power grids considering integrity attacks against substation protective IEDs

    , Article IEEE Transactions on Industrial Informatics ; Volume 16, Issue 2 , 2020 , Pages 1035-1044 Bahrami, M ; Fotuhi Firuzabad, M ; Farzin, H ; Sharif University of Technology
    IEEE Computer Society  2020
    Abstract
    Secure operation of protective intelligent electronic devices (IEDs) has been recognized as a crucial issue for power grids. By gaining access to substation IEDs, intruders can severely disrupt the operation of protection systems. This paper develops an analytical reliability assessment framework for quantifying the impacts of the hypothesized integrity attacks against protection systems. Petri net models are used to simulate possible intrusion scenarios into substation networks. The cyber network model is constructed from firewall, intrusion prevention system (IPS), and password models, which are three types of defense mechanisms for protecting substation networks. In this paper, two main... 

    Pool boiling heat transfer in dilute water/triethyleneglycol solutions

    , Article Chinese Journal of Chemical Engineering ; Volume 17, Issue 4 , 2009 , Pages 552-561 ; 10049541 (ISSN) Alavi Fazel, S. A ; Safekordi, A. A ; Jamialahmadi, M ; Sharif University of Technology
    Abstract
    Boiling of water/triethyleneglycol (TEG) binary solution has a wide-ranging application in the gas processing engineering. Design, operation and optimization of the involved boilers require accurate prediction of boiling heat transfer coefficient between surface and solution. In this investigation, nucleate pool boiling heat transfer coefficient has been experimentally measured on a horizontal rod heater in water/TEG binary solutions in a wide range of concentrations and heat fluxes under ambient condition. The present experimental data are correlated using major existing correlations. In addition a correlation is presented for prediction of pool boiling heat transfer for the system in which... 

    Performance evaluation of the solar-driven multi-ejector refrigeration cycle without an auxiliary heat source

    , Article Applied Thermal Engineering ; Volume 217 , 2022 ; 13594311 (ISSN) Beyrami, J ; Hakkaki Fard, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Solar-driven ejector refrigeration (SER) systems have been granted special attention as a green and sustainable replacement for conventional vapor compression cooling systems. However, despite their significant advantages, SER systems suffer from a relatively low coefficient of performance and failure at high ambient temperatures and low solar radiations. Therefore, the need for an auxiliary heat source and cooling system has hindered their adoption in practice. In an attempt to eliminate the need for an auxiliary heat source and cooling system, this contribution puts forward a novel Solar-driven Multi-Ejector Refrigeration (SMER) system with an internal heat exchanger, a regenerator, and a... 

    Performance evaluation of a modular design ofwind tower withwetted surfaces

    , Article Energies ; Volume 10, Issue 7 , 2017 ; 19961073 (ISSN) Khani, S. M. R ; Bahadori, M. N ; Dehghani Sanij, A ; Nourbakhsh, A ; Sharif University of Technology
    MDPI AG  2017
    Abstract
    Wind towers or wind catchers, as passive cooling systems, can provide natural ventilation in buildings located in hot, arid regions. These natural cooling systems can provide thermal comfort for the building inhabitants throughout the warm months. In this paper, a modular design of a wind tower is introduced. The design, called a modular wind tower with wetted surfaces, was investigated experimentally and analytically. To determine the performance of the wind tower, air temperature, relative humidity (RH) and air velocity were measured at different points. Measurements were carried out when the wind speed was zero. The experimental results were compared with the analytical ones. The results... 

    Performance analysis and transient simulation of a vapor compression cooling system integrated with phase change material as thermal energy storage for electric peak load shaving

    , Article Journal of Energy Storage ; Volume 35 , 2021 ; 2352152X (ISSN) Riahi, A ; Jafari Mosleh, H ; Kavian, S ; Shafii, M. B ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    A vapor-compression cooling system utilizing PCM is studied whereby the electricity consumption peak load is shifted. More specifically, the dynamic performance of the cooling system with and without PCM is evaluated and is presented with details on the hottest day of the year in Tehran, Iran. The proposed system uses the cooling energy to freeze or “discharge” the PCM during nighttime when the cooling load is minimally needed and uses the stored cooling energy during the peak load hours by melting or “charging” the PCM. This leads to better performance during the peak load hours when higher cooling loads are required. Oleic acid was chosen as PCM. The simulation was performed in EES... 

    Optimized design of water-saving system in-slab cooling plant of Mobarakeh steel complex

    , Article Journal of Cleaner Production ; Volume 335 , 2022 ; 09596526 (ISSN) Hashemi Beni, M ; Bazofti, M. M ; Golkar, B ; Saboohi, Y ; Mokhtari, H ; Milani, B ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The aim of this paper is to provide a solution to decrease water consumption in the slab-cooling unit of Mobarakeh Steel Complex in Iran. The plan should give an hourly decline in water consumption during a one-year operation period to calculate the annual reduction in water consumption of the proposed process. Recommended solutions for the conversion scheme of an existing wet cooling tower to a dry or hybrid cooling system require modeling of the slab cooling process. The curves of temperature drop in slabs are extracted in this paper by modeling the transient heat transfer of the slabs in the cooling process. This will reduce the computational volume. Then, the design and optimization of... 

    Optimal placement of protective and controlling devices in electric power distribution systems: A MIP Model

    , Article IEEE Access ; Volume 7 , 2019 , Pages 122827-122837 ; 21693536 (ISSN) Izadi, M ; Safdarian, A ; Moeini Aghtaie, M ; Lehtonen, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    This paper presents a mathematical model for simultaneous deployment of protective devices (PDs) and controlling devices (CDs) in distribution networks. The PDs include fuses and reclosers and the CDs are remote controlled switches (RCSs) and manual switches (MSs). The model is to minimize equipment costs as well as sustained and momentary interruption costs. It considers the coordination of fuses and reclosers during temporary faults involving fuse saving and fuse blowing schemes. The model is in mixed integer programming (MIP) fashion which can be effectively solved with available solvers. The performance of the proposed model is verified through applying it to Bus 4 of Roy Billinton test... 

    Optimal placement of protective and controlling devices in electric power distribution systems: a MIP model

    , Article IEEE Access ; Volume 7 , 2019 , Pages 122827-122837 ; 21693536 (ISSN) Izadi, M ; Safdarian, A ; Moeini Aghtaie, M ; Lehtonen, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    This paper presents a mathematical model for simultaneous deployment of protective devices (PDs) and controlling devices (CDs) in distribution networks. The PDs include fuses and reclosers and the CDs are remote controlled switches (RCSs) and manual switches (MSs). The model is to minimize equipment costs as well as sustained and momentary interruption costs. It considers the coordination of fuses and reclosers during temporary faults involving fuse saving and fuse blowing schemes. The model is in mixed integer programming (MIP) fashion which can be effectively solved with available solvers. The performance of the proposed model is verified through applying it to Bus 4 of Roy Billinton test... 

    Multi-objective optimization of regenerative ORC system integrated with thermoelectric generators for low-temperature waste heat recovery

    , Article Energy Reports ; Volume 7 , 2021 , Pages 300-313 ; 23524847 (ISSN) Aliahmadi, M ; Moosavi, A ; Sadrhosseini, H ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Three novel geothermal-based organic Rankine cycle (ORC) systems are proposed to enhance the efficiency and for waste heat recovery purpose. The proposed systems are modeled based on a basic ORC system (concept 1), an ORC system with an internal heat exchanger (concept 2), and a regenerative ORC system (concept 3). Accordingly, two thermoelectric generators (TEG) are introduced into the systems to exploit the waste heat of the system. The condenser is replaced with a TEG unit while the other TEG unit is used to recover the waste heat of the reinjected geothermal fluid. A comprehensive numerical investigation is conducted to compare the proposed systems from the thermodynamic and... 

    Multi-objective optimization of regenerative ORC system integrated with thermoelectric generators for low-temperature waste heat recovery

    , Article Energy Reports ; Volume 7 , 2021 , Pages 300-313 ; 23524847 (ISSN) Aliahmadi, M ; Moosavi, A ; Sadrhosseini, H ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Three novel geothermal-based organic Rankine cycle (ORC) systems are proposed to enhance the efficiency and for waste heat recovery purpose. The proposed systems are modeled based on a basic ORC system (concept 1), an ORC system with an internal heat exchanger (concept 2), and a regenerative ORC system (concept 3). Accordingly, two thermoelectric generators (TEG) are introduced into the systems to exploit the waste heat of the system. The condenser is replaced with a TEG unit while the other TEG unit is used to recover the waste heat of the reinjected geothermal fluid. A comprehensive numerical investigation is conducted to compare the proposed systems from the thermodynamic and... 

    Materials selection for electronic enclosures in space environment considering electromagnetic interference effect

    , Article Advances in Space Research ; Volume 49, Issue 3 , February , 2012 , Pages 586-593 ; 02731177 (ISSN) Fayazbakhsh, K ; Abedian, A ; Sharif University of Technology
    2012
    Abstract
    Using low power electronic devices for space applications to reduce the mass and energy consumption has lead to electromagnetic interference (EMI) problem. Electronic enclosures are used to shield electronic devices against EMI. In the past, electromagnetic shielding has been mainly the only criteria considered in electronic enclosure design. However, there are several structural and thermal requirements for selection of shielding materials which should also be taken into account. In this research work, three quantitative materials selection methods, i.e. Digital Logic (DL), Modified Digital Logic (MDL), and Z-transformation, are employed to select the best material from among a list of... 

    Iterative machine learning-aided framework bridges between fatigue and creep damages in solder interconnections

    , Article IEEE Transactions on Components, Packaging and Manufacturing Technology ; 2021 ; 21563950 (ISSN) Samavatian, V ; Fotuhi Firuzabad, M ; Samavatian, M ; Dehghanian, P ; Blaabjerg, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    Costly and time-consuming approaches for solder joint lifetime estimation in electronic systems along with the limited availability and incoherency of data challenge the reliability considerations to be among the primary design criteria of electronic devices. In this paper, an iterative machine learning framework is designed to predict the useful lifetime of the solder joint using a set of self-healing data that reinforces the machine learning predictive model with thermal loading specifications, material properties, and geometry of the solder joint. The self-healing dataset is iteratively injected through a correlation-driven neural network to fulfill the data diversity. Outcomes show a... 

    Iterative machine learning-aided framework bridges between fatigue and creep damages in solder interconnections

    , Article IEEE Transactions on Components, Packaging and Manufacturing Technology ; Volume 12, Issue 2 , 2022 , Pages 349-358 ; 21563950 (ISSN) Samavatian, V ; Fotuhi Firuzabad, M ; Samavatian, M ; Dehghanian, P ; Blaabjerg, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    Costly and time-consuming approaches for solder joint lifetime estimation in electronic systems along with the limited availability and incoherency of data challenge the reliability considerations to be among the primary design criteria of electronic devices. In this article, an iterative machine learning framework is designed to predict the useful lifetime of the solder joint using a set of self-healing data that reinforce the machine learning predictive model with thermal loading specifications, material properties, and geometry of the solder joint. The self-healing dataset is iteratively injected through a correlation-driven neural network (CDNN) to fulfill the data diversity. Outcomes... 

    Investigations on the effects of the tool material, geometry, and tilt angle on friction stir welding of pure titanium

    , Article Journal of Materials Engineering and Performance ; Volume 19, Issue 7 , 2010 , Pages 955-962 ; 10599495 (ISSN) Reshad Seighalani, K ; Besharati Givi, M. K ; Nasiri, A. M ; Bahemmat, P ; Sharif University of Technology
    2010
    Abstract
    Friction stir welding (FSW) parameters, such as tool material, tool geometry, tilt angle, tool rotational speed, welding speed, and axial force play a major role in the weld quality of titanium alloys. Because of excessive erosion, tool material and geometry play the main roles in FSW of titanium alloys. Therefore, in the present work for the first time, tool material and geometry, tool tilt angle, cooling system and shielding gas effects on macrostructure, microstructure, and mechanical properties of pure titanium weld joint were investigated. Result of this research shows that Ti can be joined by the FSW, using a tool with a shoulder made of tungsten (W) and simple pin made of tungsten... 

    Investigating potential benefits of a salinity gradient solar pond for ejector refrigeration cycle coupled with a thermoelectric generator

    , Article Energy ; Volume 172 , 2019 , Pages 675-690 ; 03605442 (ISSN) Rostamzadeh, H ; Nourani, P ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Extraction of thermal heat from a salinity-gradient solar pond (SGSP) as a way of accumulating solar energy, stockpiling and taking merit of it for medium and low temperature demands is presented as an interesting topic in recent decades. This reliable supply of heat can be used for low-temperature refrigeration systems to yield cooling load for residential applications. For this purpose, theoretical investigation of ejector refrigeration cycle (ERC) driven by a SGSP is carried out to produce cooling output. Also, thermoelectric generator (TEG) is used as a potential device replacing condenser of the ERC for the sake of bolstering performance of the fundamental system by producing power,...