Loading...
Search for: weighing
0.005 seconds
Total 33 records

    Localized Multiple Kernel Learning for Image Classification

    , Ph.D. Dissertation Sharif University of Technology Zamani, Fatemeh (Author) ; Jamzad, Mansour (Supervisor)
    Abstract
    It is not possible to compute a linear classifier to classify real world images, which are the focus of this thesis. Therefore, the space of such images is considered as a complex. In such cases, kernel trick in which data samples are implicitly mapped to a higher dimension space, leads to a more accurate classifier in such spaces. In kernel learning methods, the best kernel is trained for the classification problem in hand. Multiple Kernel Learning is a framework which uses weighted sum of multiple kernels. This framework achieves good accuracy in image classification since it allows describing images via various features. In the image input space which is composed of different extracted... 

    Design and Fabrication of Weigh in Motion System for Railway Vehicles

    , M.Sc. Thesis Sharif University of Technology Pourjoula, Mohammad (Author) ; Saadat Foumani, Mahmud (Supervisor)
    Abstract
    Railroads should be well maintained for safe and efficient operation. The most important reason for the failure of railways is overload and asymmetric load on them. Also, the proper interval for repairs should be adjusted to fit the load crossed over. In order to carry out all these tasks, a constant observation of the weight on the rails must take place. Current dynamic weighing systems are costly. In addition, the installation of these systems is time-consuming and causes permanent damage to the rails. On the other hand, some of the cheaper models of weighing systems require full stop and static weighing, which practically does not work at all, especially on busy rails due to delays. The... 

    Preparation and Investigation the Properties of UHMWPE/Graphene Nanocomposites Via in Situ Polymerization Using Ziegler Natta Catalyst

    , Ph.D. Dissertation Sharif University of Technology Shafiee, Mojtaba (Author) ; Ramezani Saadat Abadi, Ahmad (Supervisor)
    Abstract
    The main object of the presented thesis is manufacturing ultra high molecular weight polyethylene(UHMWPE)/Graphene nanocomposites by insitu polymerization using Ziegler Natta catalysts. In this study, three types of Ziegler Natta Catalysts such as Magnesium ethoxide supported, single-supported and bi-supported have been studied. Experimental conditions are optimized (from point of productivity and molecular weight) by Design expert software with response surface methodology (Box-Behnken design). Effect of process parameters like temperature, pressure and [Al]/[Ti] molar ratio on productivity and Molecular weight are investigated. Also, the effect of hydrogen presence and type of cocatalyst... 

    Preparation and Investigation of Ziegler-natta Catalyst with Nano MoS2 Support in UHMWPE Synthesis

    , M.Sc. Thesis Sharif University of Technology Amini, Majed (Author) ; Ramazani Saadat Abad, Ahmad (Supervisor)
    Abstract
    Ultra high molecular weight polyethylene has attracted the attention of numerous researchers and industries. This polymer due to its strong properties can be used in advanced military industries, medical engineering and cases in which high strength and high abrasion resistance is required. Present study aims to fabricate UHMWPE/Molybdenum disulfide composites, using in-situ polymerization. Before carrying out the polymerization process, nanoparticles of molybdenum disulfide underwent various processes such as oxidation, pickling, ultrasonic and thermal shock, in order to increase the interlayer distance and creating functional groups on the surface, then various analyzes, such as XRD, FESEM,... 

    Experimental Investigation of Biodiesel Production from Oils by Transesterification Method Catalyzed by Nano-heterogeneous Catalysts

    , M.Sc. Thesis Sharif University of Technology Talebi, Soroush (Author) ;
    Abstract
    Today polyolefin definitely is one of the most applicable polymers in the world. One of these polymers is ultra-high molecular weight polyethylene. Being applicable in a number of high-tech industries such as military service, battery separators, and other areas, expands the usage of these polymers. Electrospinning is one of the molding methods in order to synthesize fiber polymers. Using this method, a great deal of polymer fibers have been prepared. It is worth noting that the device used for olefins should have temperature control and temperature increase ability. The electrospinning device with the temperature control has not been built in the country; therefore, this device has been... 

    Studying the Effect of Zirconia & GNP on Mechanical, Tribological & Biological Properties of UHMWPE-HAp Nanocomposites used in Total Hip Joint Replacement

    , M.Sc. Thesis Sharif University of Technology Mohseni Taromsari, Sara (Author) ; Bagheri, Reza (Supervisor) ; Faghihi Sani, Mohammad Ali (Supervisor)
    Abstract
    Medical engineering advances in total joint replacements and society’s rising demand for long lasting materials, have proven it essential to manufacture materials that are more similar to the original tissue in the fields of mechanical, tribological and biological properties. Ultra High Molecular Weight Polyethylene(UHMWPE), is a polymer widely used in arthroplasty applications due to its biocompatibility, chemical stability and proper mechanical properties. In this study, UHMWPE-HAp nanocomposites reinforced with Zirconia and Graphene were manufactured aiming to reach a structure that is more compatible with bone tissue and also to improve overall properties. First, using ultrasonication... 

    Evaluation of the Hydrodynamic Performance of A Special Submarine Rescue System

    , M.Sc. Thesis Sharif University of Technology Mohammadpour, Mojtaba (Author) ; Abbaspour, Madjid (Supervisor)
    Abstract
    The increasing growth of marine tourism has strengthened the activities related to this industry. One of the most profitable of these activities is recreational submarines. A traction recreational submarine is an idea in this field, in order to reduce costs, the propulsion force is removed and the submarine is towed by the mother ship. The most important reason for using the traction system and removing the independent drive is to prevent vibration and noise caused by the rotation of the propeller to prevent the escape of aquatic animals and to create a beautiful view from under the sea to watch underwater wonders. Searching for safety and saving people's lives in emergency situations is an... 

    Viscoelastic dynamics and static responses of a graphene nanoplatelets-reinforced composite cylindrical microshell

    , Article Mechanics Based Design of Structures and Machines ; 2020 Shokrgozar, A ; Ghabussi, A ; Ebrahimi, F ; Habibi, M ; Safarpour, H ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    In this study, a cylindrical microshell stability reinforced by graphene nanoplatelets is investigated while an axial load is applied uniformly. In addition, viscoelastic foundation covers the composite nanostructure. Therefore, the impacts of the small scale parameter are studied while nonlocal strain gradient theory (NSGT) is considered. The present research deals for the first time with the consideration of viscoelastic, strain–stress size-dependent parameters along with taking into account of various boundary conditions (BCs), especially C-F ones put into effect on the proposed theory. The governing equations (G.Eqs) and BCs have been obtained utilizing energy method and solved with... 

    Viscoelastic dynamics and static responses of a graphene nanoplatelets-reinforced composite cylindrical microshell

    , Article Mechanics Based Design of Structures and Machines ; Volume 50, Issue 2 , 2022 , Pages 509-536 ; 15397734 (ISSN) Shokrgozar, A ; Ghabussi, A ; Ebrahimi, F ; Habibi, M ; Safarpour, H ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    In this study, a cylindrical microshell stability reinforced by graphene nanoplatelets is investigated while an axial load is applied uniformly. In addition, viscoelastic foundation covers the composite nanostructure. Therefore, the impacts of the small scale parameter are studied while nonlocal strain gradient theory (NSGT) is considered. The present research deals for the first time with the consideration of viscoelastic, strain–stress size-dependent parameters along with taking into account of various boundary conditions (BCs), especially C-F ones put into effect on the proposed theory. The governing equations (G.Eqs) and BCs have been obtained utilizing energy method and solved with... 

    Using approximate similitude to design dynamic similar models

    , Article Aerospace Science and Technology ; Volume 94 , 2019 ; 12709638 (ISSN) Banazadeh, A ; Hajipouzadeh, P ; Sharif University of Technology
    Elsevier Masson SAS  2019
    Abstract
    This research deals with the analysis of approximate similitude between the dynamic similar models and the full-scale prototype of an aircraft. Due to physical and technical constraints, a full dynamic similarity is not practically possible and previous works have all neglected one or two similarity criteria like Mach or Reynolds numbers for the sake of Froude number similarity. In this work, it is shown that Mach number has an important effect on aerodynamic characteristics and dynamic response of an aircraft and that neglecting it makes the generalization of the scale-model test data invalid for the full-scale prototype. In order to address this problem, a measurable quantity named... 

    Two-dimensional clustering of nanoparticles on the surface of cellulose fibers

    , Article Journal of Physical Chemistry C ; Volume 113, Issue 28 , 2009 , Pages 12022-12027 ; 19327447 (ISSN) Khajeh Aminian, M ; Taghavinia, N ; Irajizad, A ; Mahdavi, M ; Ye, J ; Chavoshi, M ; Vashaei, Z ; Sharif University of Technology
    2009
    Abstract
    Density of surface charges of cellulose fibers and -potential of TiO2 nanoparticles in the solution were measured and controlled by pH. The adsorption and clustering of TiO2 nanoparticles on the surface of cellulose fibers were studied using scanning electron microscopy (SEM) and a scale in different situations of repulsion and attraction between the particles and surface. The experiments show formation of two-dimensional clusters of nanoparticles on the surface. Weight measurement of the adsorbed particles and clusters via the adsorption time results in that there are three stages containing nucleation, two-dimensional growth and saturation for clustering of nanoparticles on the surface.... 

    The impact of CO2 injection and pressure changes on asphaltene molecular weight distribution in a heavy crude oil: An experimental study

    , Article Petroleum Science and Technology ; Volume 28, Issue 17 , 2010 , Pages 1728-1739 ; 10916466 (ISSN) Sadeqimoqadam, M ; Firoozinia, H ; Kharrat, R ; Ghazanfari, M. H ; Sharif University of Technology
    Abstract
    This work concerns observing the pressure as well as CO2 mole percentage effects on asphaltene molecular weight distributions at reservoir conditions. A high-pressure, high-temperature asphaltene measurement setup was applied, and the amount of precipitated asphaltene at different pressures as well as CO2 mole percentage in an Iranian heavy crude oil was measured. Moreover, the asphaltene molecular weight distributions during titration of crude oil with different n-alkanes were investigated. The gel permeation chromatography (GPC) apparatus was used for characterization of asphaltene molecular weight under different conditions. It has been observed that some thermodynamic changes such as... 

    The effect of multiple surface treatments on biological properties of Ti-6Al-4V alloy

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Vol. 45, issue. 10 , 2014 , p. 4588-4593 Parsikia, F ; Amini, P ; Asgari, S ; Sharif University of Technology
    Abstract
    In this research, the effect of various surface treatments including laser processing, grit blasting and anodizing on chemical structure, surface topography, and bioactivity of Ti-6Al-4V was investigated. Six groups of samples were prepared by a combination of two alternative laser processes, grit blasting and anodizing. Selected samples were first evaluated using microanalysis techniques and contact roughness testing and were then exposed to in vitro environment. Scanning electron microscopy was used to characterize the corresponding final surface morphologies. Weight measurement and atomic absorption tests were employed for determination of bioactivity limits of different surface... 

    The critical voltage of a GPL-reinforced composite microdisk covered with piezoelectric layer

    , Article Engineering with Computers ; 2020 Shamsaddini Lori, E ; Ebrahimi, F ; Elianddy Bin Supeni, E ; Habibi, M ; Safarpour, H ; Sharif University of Technology
    Springer  2020
    Abstract
    In this research, electrically characteristics of a graphene nanoplatelet (GPL)-reinforced composite (GPLRC) microdisk are explored using generalized differential quadrature method. Also, the current microstructure is coupled with a piezoelectric actuator (PIAC). The extended form of Halpin–Tsai micromechanics is used to acquire the elasticity of the structure, whereas the variation of thermal expansion, Poisson’s ratio, and density through the thickness direction is determined by the rule of mixtures. Hamilton’s principle is implemented to establish governing equations and associated boundary conditions of the GPLRC microdisk joint with PIAC. The compatibility conditions are satisfied by... 

    The critical voltage of a GPL-reinforced composite microdisk covered with piezoelectric layer

    , Article Engineering with Computers ; Volume 37, Issue 4 , 2021 , Pages 3489-3508 ; 01770667 (ISSN) Shamsaddini Lori, E ; Ebrahimi, F ; Elianddy Bin Supeni, E ; Habibi, M ; Safarpour, H ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    In this research, electrically characteristics of a graphene nanoplatelet (GPL)-reinforced composite (GPLRC) microdisk are explored using generalized differential quadrature method. Also, the current microstructure is coupled with a piezoelectric actuator (PIAC). The extended form of Halpin–Tsai micromechanics is used to acquire the elasticity of the structure, whereas the variation of thermal expansion, Poisson’s ratio, and density through the thickness direction is determined by the rule of mixtures. Hamilton’s principle is implemented to establish governing equations and associated boundary conditions of the GPLRC microdisk joint with PIAC. The compatibility conditions are satisfied by... 

    Statistical evaluation of using the new generation of wind turbines in South Africa

    , Article Energy Reports ; Volume 6 , November , 2020 , Pages 2816-2827 Mostafaeipour, A ; Jahangiri, M ; Haghani, A ; Hosseini Dehshiri, S. J ; Hosseini Dehshiri, S. S ; Sedaghat, A ; Saghaei, H ; Akinlabi, E. T ; Sichilalu, S. M ; Chowdhury, S ; Techato, K ; Issakhov, A
    Elsevier Ltd  2020
    Abstract
    In the view of the latest status and the potential of developing wind energy in South Africa, the present study aims to perform technical–economic–environmental analysis on a wind turbine system with HOMER software using the 20-years average data of the wind speed obtained from NASA's database, for providing the electricity to residential buildings. The results showed that the Port Elizabeth station, had the lowest levelized cost of electricity (LCOE) with the value of -0.363 $/kWh when using the EOLO wind turbine, and the Bloemfontein station had the highest LCOE with the value of 1.601 $/kWh when using the Turby wind turbine. The results from the step-wise assessment ratio analysis... 

    Stability analysis of an electrically cylindrical nanoshell reinforced with graphene nanoplatelets

    , Article Composites Part B: Engineering ; Volume 175 , 2019 ; 13598368 (ISSN) Habibi, M ; Taghdir, A ; Safarpour, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Due to a rapid development of process manufacturing, composite materials with graphene-reinforcement have obtained so much commercially notices in the promoted engineering applications. With this regard, the critical voltage and frequency characteristics of a graphene nanoplatelets (GNP) composite cylindrical nanoshell coupled with the piezoelectric actuator (PIAC) are investigated. The material properties of piece-wise graphene-reinforced composites (GNPRCs) are assumed to be graded through the thickness direction of a cylindrical nanoshell and are estimated based on a nanomechanical model. For the first time, the current study is considering the effects of the piezoelectric layer, GNPRC... 

    SiO 2 -covered graphene oxide nanohybrids for in situ preparation of UHMWPE/GO(SiO 2 ) nanocomposites with superior mechanical and tribological properties

    , Article Journal of Applied Polymer Science ; Volume 136, Issue 31 , 2019 ; 00218995 (ISSN) Haddadi, S. A ; Saadatabadi, A. R ; Kheradmand, A ; Amini, M ; Ramezanzadeh, M ; Sharif University of Technology
    John Wiley and Sons Inc  2019
    Abstract
    The modified Hummer technique was used in the preparation of graphene oxide (GO) nanosheets, and then SiO 2 decorated GO [GO(SiO 2 )] nanosheets were synthesized via the sol–gel method. Then, ultrahigh-molecular-weight polyethylene (UHMWPE) nanocomposites loaded with 0.5, 1, 1.5, and 2 wt % of GO(SiO 2 ) were prepared using magnesium ethoxide/GO(SiO 2 )-supported Ziegler–Natta catalysts via the in situ polymerization. Morphological study of the prepared polymer powders was assessed using field-emission scanning electron microscopy, which showed that GO(SiO 2 ) nanohybrids have been uniformly dispersed and distributed into the UHMWPE matrix. Also, the neat UHMWPE and its nanocomposites were... 

    On optimum asymptotic multiuser efficiency of randomly spread CDMA

    , Article IEEE Transactions on Information Theory ; Volume 61, Issue 12 , 2015 , Pages 6635-6642 ; 00189448 (ISSN) Sedaghat, M. A ; Müller, R. R ; Marvasti, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    We extend the result by Tse and Verdú on the optimum asymptotic multiuser efficiency of randomly spread code division multiple access (CDMA) with binary phase shift keying input. Random Gaussian and random binary antipodal spreading are considered. We obtain the optimum asymptotic multiuser efficiency of a K-user system with spreading gain N when K and N → ∞ and the loading factor, (K/N) , grows logarithmically with K under some conditions. It is shown that the optimum detector in a Gaussian randomly spread CDMA system has a performance close to the single user system at high signal-to-noise ratio when K and N → ∞ and the loading factor, (K/N), is kept less than (log3 K/2). Random binary... 

    Multirate, differentiated-qoS, and multilevel fiber-optic CDMA system via optical logic gate elements

    , Article Journal of Lightwave Technology ; Volume 27, Issue 19 , 2009 , Pages 4348-4359 ; 07338724 (ISSN) Beyranvand, H ; Ghaffari, B. M ; Salehi, J. A ; Sharif University of Technology
    2009
    Abstract
    In this paper, we present a novel multirate, differentiated quality of service (QoS) optical CDMA (OCDMA) system using multilevel signaling technique. The emphasis is on OCDMA systems employing multi-length variable-weight optical orthogonal codes (MLVW-OOC) as signature sequence. We begin by presenting a two-class variable-weight OCDMA system in which all users have the same energy level in one bit duration. As a consequence, high weight users transmit their corresponding optical pulses at a lower power while low weight users transmit their corresponding optical pulses at a higher power level. We show that using this multilevel signaling technique, while employing the well known optical AND...