Loading...
Search for: soltani--m--r
0.137 seconds

    Effects of reduced frequency on the performance of a wind turbine blade in the low and high turbulent unsteady flow

    , Article 25th AIAA Applied Aerodynamics Conference, 2007, Miami, FL, 25 June 2007 through 28 June 2007 ; Volume 2 , 2007 , Pages 877-882 ; 10485953 (ISSN); 1563478986 (ISBN); 9781563478987 (ISBN) Soltani, M. R ; Amiralaei, M. R ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2007
    Abstract
    An extensive experimental study is conducted to investigate the effects of reduced frequency on a harmonically pitching wing where its cross section is used in a 660 kW wind turbine under construction in Iran. The corresponding lift coefficient and real time pressure signatures at three sections of the model at various reduced frequencies are examined. The test covers a wide range of angles of attack at prestall, stall, and deep stall regions. Pressure distributions at tip, middle, and root sections of the wing were recorded and from these distributions the lift coefficients are computed. The results show great role of the reduced frequency in altering the maximum lift coefficients, lift... 

    Numerical simulation of inlet buzz

    , Article Aerospace Science and Technology ; Volume 97 , 2020 Abedi, M ; Askari, R ; Soltani, M. R ; Sharif University of Technology
    Elsevier Masson SAS  2020
    Abstract
    Comprehensive numerical analyses are conducted to simulate and capture “Buzz” phenomenon in a supersonic mixed compression air inlet. The buzz is an unsteady self-sustained feature that occurs in supersonic inlets, especially when operating in their subcritical condition. In such a situation, the shock waves oscillate along the inlet and cause mass flow fluctuations inside the inlet that will deteriorate the engine performance significantly. An axisymmetric unsteady numerical simulation was used to solve the Navier–Stokes equations combined with the URANS SST k–ω turbulence model. The simulations for two different free-stream Mach numbers of M∞=2.0 and 2.2 and at two specific subcritical... 

    Increase in the β-sheet character of an amyloidogenic peptide upon adsorption onto gold and silver surfaces

    , Article ChemPhysChem ; Volume 18, Issue 5 , 2017 , Pages 526-536 ; 14394235 (ISSN) Soltani, N ; Gholami, M. R ; Sharif University of Technology
    Wiley-VCH Verlag  2017
    Abstract
    Fibrillation of amyloid beta (Aβ) peptide is the hallmark of Alzheimer's disease. Given that interactions at the bio–nano interface affect the fibrillation tendency of this peptide, an understanding of the interactions at Aβ peptide–inorganic surfaces on the microscopic level can help to determine the possible neurotoxicity of nanoparticles. Here, the interactions between a fibril-forming peptide, Aβ25–35, and (111) and (100) facets of gold and silver surfaces have been studied by conducting atomistic molecular dynamics simulations. The obtained results indicate that the adsorption onto gold and silver surfaces force the peptide into the β-sheet-rich conformations, which is prone to... 

    Effect of an end plate on surface pressure distributions of two swept wings

    , Article Chinese Journal of Aeronautics ; Volume 30, Issue 5 , 2017 , Pages 1631-1643 ; 10009361 (ISSN) Soltani, M. R ; Masdari, M ; Tirandaz, M. R ; Sharif University of Technology
    2017
    Abstract
    A series of wind tunnel tests was conducted to examine how an end plate affects the pressure distributions of two wings with leading edge (LE) sweep angles of 23° and 40°. All the experiments were carried out at a midchord Reynolds number of 8×105, covering an angle of attack (AOA) range from −2° to 14°. Static pressure distribution measurements were acquired over the upper surfaces of the wings along three chordwise rows and one spanwise direction at the wing quarter-chord line. The results of the tests confirm that at a particular AOA, increasing the sweep angle causes a noticeable decrease in the upper-surface suction pressure. Furthermore, as the sweep angle increases, the development of... 

    Canard-wing interactions in subsonic flow

    , Article Iranian Journal of Science and Technology - Transactions of Mechanical Engineering ; Volume 37, Issue M2 , 2013 , Pages 133-147 ; 22286187 (ISSN) Samimi, S ; Davari, A. R ; Soltani, M. R ; Sharif University of Technology
    Shiraz University  2013
    Abstract
    Extensive subsonic wind tunnel tests were conducted on a coplanar wing-canard configuration at various angles of attack. In these experiments, a 60° swept canard was placed upstream of a 60° swept main delta wing. This paper deals with the distribution of mean and fluctuating pressure coefficients on the upper surfaces of both the canard and the wing immersed in a variety of angles of attack. According to the results, presence of canard postpones the vortex formation and growth on the wing to higher angles of attack compared to the canard-off case. Due to the canard downwash field, the wing operates at lower effective angles of attack and therefore, its vortex breakdown is delayed. The... 

    Unsteady flow over offshore wind turbine airfoils and aerodynamic loads with computational fluid dynamic simulations

    , Article International Journal of Environmental Science and Technology ; Volume 13, Issue 6 , 2016 , Pages 1525-1540 ; 17351472 (ISSN) Abbaspour, M ; Radmanesh, A. R ; Soltani, M. R ; Sharif University of Technology
    Center for Environmental and Energy Research and Studies  2016
    Abstract
    The first notable megawatt class wind turbine, which was the pioneer of improvement in the blade performance in large wind turbines, appeared in Vermont. Nowadays, modern wind turbines are using blades with multi-airfoils at different sections. In this study, in order to indicate the best airfoil profile for the optimum performance in different sections of a blade, five popular airfoils, including S8xx, FFA and AH series, were studied. On the large-scale profile, shear stress transport K–ω model was applied for the simulation of horizontal axis wind turbines for different wind speeds. The aerodynamic simulation was accomplished using computational fluid dynamic method, which in turn is based... 

    Experimental investigation of the effect of active flow control on the wake of a wind turbine blade

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 235, Issue 22 , 2021 , Pages 6122-6138 ; 09544062 (ISSN) Maleki, G ; Davari, A. R ; Soltani, M. R ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    An extensive experimental investigation was conducted to study the effects of Dielectric Barrier Discharge (DBD), on the flow field of an airfoil at low Reynolds number. The DBD was mounted near the leading edge of a section of a wind turbine blade. It is believed that DBD can postpone the separation point on the airfoil by injecting momentum to the flow. The effects of steady actuations on the velocity profiles in the wake region have been investigated. The tests were performed at α = 4 to 36 degrees i.e. from low to deep stall angles of attack regions. Both surface pressure distribution and wake profile show remarkable improvement at high angles of attack, beyond the static stall angle of... 

    Effect of plunging amplitude on the performance of a wind turbine blade section

    , Article Aeronautical Journal ; Volume 111, Issue 1123 , 2007 , Pages 571-588 ; 00019240 (ISSN) Soltani, M. R ; Marzabadi, F. R ; Sharif University of Technology
    Royal Aeronautical Society  2007
    Abstract
    Extensive low speed wind-tunnel tests were conducted to study the unsteady aerodynamic behaviour of an airfoil sinusoidally oscillating in plunge. The experiments involved measuring the surface pressure distribution over a range of amplitudes, H = ±5 to ±15cm. In addition, steady state data were acquired and were used to furnish a baseline for further analysis and comparison. The model was oscillated with a constant reduced frequency, k = 0.058, at three mean angles of attack of 0°, 10° and 18°. The unsteady aerodynamic loads were calculated from the surface pressure measurements, 64 ports, along the chord for both upper and lower surfaces of the model. The plunging displacements were... 

    A new approach to investigate unsteady aerodynamic phenomena

    , Article Scientia Iranica ; Volume 12, Issue 4 , 2005 , Pages 379-391 ; 10263098 (ISSN) Soltani, M. R ; Davari, A. R ; Sharif University of Technology
    Sharif University of Technology  2005
    Abstract
    A new approach, based on a Generalized Regression Neural Network (GRNN), has been proposed to predict the unsteady forces and moments of two different models; a 70° swept delta wing in subsonic incompressible flow and a standard fighter model (SDM) in a compressible flow regime, both undergoing sinusoidal pitching motion. Extensive wind tunnel results were used for training the network and verification of the values predicted by this approach. GRNN was trained by the aforementioned experimental data and, subsequently, was used as a prediction tool to determine the unsteady longitudinal forces and moment of the two models under various conditions. Further, it was applied to extend the... 

    On self-similar behaviour of the hysteresis loops in pitching motions

    , Article Aeronautical Journal ; Volume 108, Issue 1086 , 2004 , Pages 427-434 ; 00019240 (ISSN) Soltani, M. R ; Davari, A. R ; Sharif University of Technology
    Royal Aeronautical Society  2004
    Abstract
    A new similarity parameter has been used for analyzing the unsteady aerodynamic, behaviour of vehicles undergoing sinusoidal pitching motion. If this parameter is identical for two unsteady manoeuvres with different reduced frequencies and oscillation amplitudes, the corresponding hysteresis loops of the force and moment collapse on each other, To support and verify this, extensive unsteady wind tunnel tests have been conducted on a standard model, which is a well known fighter type configuration. The acquired data were used to train a certain type of neural network, called the Generalised Regression Neural Network (GRNN), to reduce the number of wind tunnel runs. The scheme, once proved to... 

    Flow analysis around a pitching airfoil

    , Article Collection of Technical Papers - 22nd AIAA Applied Aerodynamics Conference, Providence, RI, 16 August 2004 through 19 August 2004 ; Volume 2 , 2004 , Pages 914-924 ; 10485953 (ISSN) Tolouei, E ; Mani, M ; Soltani, M. R ; Boroomand, M ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2004
    Abstract
    A series of low-speed wind tunnel tests were performed to investigate the unsteady pressure distribution over an airfoil. Dynamic pitching motion was produced by oscillating the model over a range of reduced frequencies, k=0.022 - 0.066. In addition, steady data were acquired and examined to furnish as a baseline for analysis and comparison. The model was oscillated between 0-18° angle of attack. Surface static pressure was measured from x/c=5-80% for both upper and lower surfaces. The pressure coefficients in the low angle of attack range showed little overshoot when compared with the static values, while for the large angle of attack cases the differences were significant. For a constant... 

    Application of artificial neural network for the prediction of pressure distribution of a plunging airfoil

    , Article World Academy of Science, Engineering and Technology ; Volume 40 , 2009 , Pages 237-242 ; 2010376X (ISSN) Rasi Maezabadi, F ; Masdari, M ; Soltani, M. R ; Sharif University of Technology
    2009
    Abstract
    Series of experimental tests were conducted on a section of a 660 kW wind turbine blade to measure the pressure distribution of this model oscillating in plunging motion. In order to minimize the amount of data required to predict aerodynamic loads of the airfoil, a General Regression Neural Network, GRNN, was trained using the measured experimental data. The network once proved to be accurate enough, was used to predict the flow behavior of the airfoil for the desired conditions. Results showed that with using a few of the acquired data, the trained neural network was able to predict accurate results with minimal errors when compared with the corresponding measured values. Therefore with... 

    Numerical simulation of mixed compression intake Buzz

    , Article ASME 2017 International Mechanical Engineering Congress and Exposition, IMECE 2017, 3 November 2017 through 9 November 2017 ; Volume 1 , 2017 ; 9780791858349 (ISBN) Soltani, M. R ; Abedi, M ; Askari, R ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2017
    Abstract
    Numerical analysis has been conducted to simulate and capture Buzz phenomenon in a supersonic mixed compression air intake. Buzz is an unsteady self-sustained phenomenon occurred in supersonic intakes, especially when operating its subcritical condition, during which the system of compression and shock waves oscillate and move upstream and downstream along the intake. An axisymmetric and unsteady numerical simulation was used to solve Navier-Stokes equations in combination with URANS SST k-ω turbulence model The simulations were performed at M=2.0 and at a specific subcritical point of the intake operation where buzz was detected experimentally. Results are compared with experimental... 

    Unsteady aerodynamic analysis of different multi-MW horizontal axis wind turbine blade profiles on SST K-ω model

    , Article Green Energy and Technology ; 2018 , Pages 17-30 ; 18653529 (ISSN) Radmanesh, A. R ; Abbaspour, M ; Soltani, M. R ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    In this study, in order to indicate the best airfoil profile for the different sections of a blade, five airfoils including S8xx, FFA, and AH series were studied. Among the most popular wind power blades for this application were selected, in order to find the optimum performance. Nowadays, modern wind turbines are using blades with multi-airfoils at different sections. On the large scale profile, SST K-ω model with different wind speed at large-scale profile was applied to the simulation of horizontal axis wind turbines (HAWT). The aerodynamic simulation was accomplished using the computational fluid dynamic (CFD) method based on the finite volume method. The governing equations applied in... 

    Experiments in near-field of turbulent jets into a crossflow

    , Article Scientia Iranica ; Volume 13, Issue 2 , 2006 , Pages 134-151 ; 10263098 (ISSN) Aavani, K ; Taeibi Rahni, M ; Soltani, M. R ; Sharif University of Technology
    Sharif University of Technology  2006
    Abstract
    Low-speed wind tunnel experiments were conducted to examine the effects of jet exit behavior on the near-field characteristics of jets in crossflow. To better understand this problem, a row of six square jets were perpendicularly injected into the main turbulent flow. The jet-to-crossflow velocity ratios examined were 0.25, 0.5 and 1.0, while the jet spacing to jet diameter was 3.0. No significant temperature differences between the jet and the crossflow were introduced. The analysis of the vertical structure of the transverse jets, including focusing on the jet shear layer and the vorticity dynamics of the exiting jets, is complicated. The vorticity around the circumference of the jets was... 

    Analysis of separation control authority of DBD plasma actuator using hot-film sensor array

    , Article Journal of Applied Fluid Mechanics ; Volume 14, Issue 5 , 2021 , Pages 1421-1435 ; 17353572 (ISSN) Daliri, A ; Maghrebi, M. J ; Soltani, M. R ; Sharif University of Technology
    Isfahan University of Technology  2021
    Abstract
    The boundary-layer control authority of a DBD plasma actuator using surface mounted hot-film sensors is evaluated. Wind tunnel experiments on a wind-turbine blade section were established at a Reynolds number of 0.27 x 106. Aerodynamic performance of the wind-turbine blade section for both plasma-ON and plasma-OFF modes are evaluated using measurements made by both surface pressure and wake survey behind the model. Two distinct boundary-layer states are recognized. A state which occurs at the onset and in proximity of the deep stall, which is affected by the low-frequency instabilities of the separated flow. In this case, the steady actuation of plasma imparts local momentum on the nearby... 

    Experimental flow visulization of single swirl spray pattern at various pressure drops

    , Article 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit 2003, Huntsville, AL, 20 July 2003 through 23 July 2003 ; 2003 ; 9781624100987 (ISBN) Ghorbanian, K ; Ashjaee, M ; Soltani, M. R ; Mesbahi, M. H ; Morad, M. R ; Sharif University of Technology
    2003
    Abstract
    An experimental investigation of the flow field of pressure swirl atomizers for different pressure drops is performed. Two experimental methods are employed. For low injection pressures, a visual study is conducted while for higher pressures the velocity components and size of the droplets are measured by using Phase Doppler Anemometer. The spray formation, spray cone angle, and breakup length are visually investigated. Velocity and size of the droplets are measured on a plane of measurement along the axis of the spray so that the properties are carried out in a radial direction as a function of both pressure drop and axial distance from the nozzle. Self-similar mean axial velocity profiles... 

    Impact of reduced frequency on the time lag in pressure distribution over a supercritical airfoil in a pitch-pause-return motion

    , Article Chinese Journal of Aeronautics ; Volume 32, Issue 2 , 2019 , Pages 243-252 ; 10009361 (ISSN) Eslami, H. Z ; Davari, A. R ; Soltani, M. R ; Sharif University of Technology
    Chinese Journal of Aeronautics  2019
    Abstract
    Effects of reduced frequency, stop angle, and pause duration have been studied on a thin supercritical airfoil undergoing a pitch-pause-return motion, which is one of the classic maneuvers introduced by the AIAA Fluid Dynamics Technical Committee. Experiments were conducted in a low-speed wind tunnel at both a constant mean angle of attack and an oscillation amplitude with a reduced frequency ranging from 0.01 to 0.12. The desired stop angles of the airfoil were set to occur during the upstroke motion. The unsteady pressure distribution on the airfoil was measured for below, near, and beyond static stall conditions. Results showed that the reduced frequency and stop angle were the dominant... 

    Impact of dielectric barrier discharge plasma on the wake of a wind turbine blade section oscillating in plunge

    , Article Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy ; 2021 ; 09576509 (ISSN) Maleki, G. H ; Davari, A. R ; Soltani, M. R ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    Effects of dielectric barrier discharge plasma have been studied on the wake velocity profiles of a section of a 660 kW wind turbine blade in plunging motion in a wind tunnel. The corresponding unsteady velocity profiles show remarkable improvement when the plasma actuators were operating and the angles of attack of the model were beyond the static stall angles of the airfoil. As a result the drag force was considerably reduced. It is further observed that the plasma-induced flow attenuates the leading edge vortices that are periodically shed into wake and diminishes the large eddies downstream. The favorable effects of the plasma augmentation are shown to occur near the uppermost and... 

    Impact of dielectric barrier discharge plasma on the wake of a wind turbine blade section oscillating in plunge

    , Article Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy ; Volume 236, Issue 2 , 2022 , Pages 320-335 ; 09576509 (ISSN) Maleki, G. H ; Davari, A. R ; Soltani, M. R ; Sharif University of Technology
    SAGE Publications Ltd  2022
    Abstract
    Effects of dielectric barrier discharge plasma have been studied on the wake velocity profiles of a section of a 660 kW wind turbine blade in plunging motion in a wind tunnel. The corresponding unsteady velocity profiles show remarkable improvement when the plasma actuators were operating and the angles of attack of the model were beyond the static stall angles of the airfoil. As a result the drag force was considerably reduced. It is further observed that the plasma-induced flow attenuates the leading edge vortices that are periodically shed into wake and diminishes the large eddies downstream. The favorable effects of the plasma augmentation are shown to occur near the uppermost and...