Loading...
Search for: amino-acids
0.009 seconds
Total 140 records

    Partitioning of l-lysine monohydrochloride in aqueous two-phase systems of poly(ethylene glycol) and dipotassium hydrogen phosphate or trisodium citrate 5-hydrate

    , Article Journal of Chemical and Engineering Data ; Volume 55, Issue 9 , 2010 , Pages 3005-3009 ; 00219568 (ISSN) Mirsiaghi, M ; Pazuki, G ; Vossoughi, M ; Alemzadeh, I ; Sharif University of Technology
    2010
    Abstract
    The partition constants of l-lysine HCl were measured in polymer-salt aqueous two-phase systems. These systems contain poly(ethylene glycol) with a nominal molecular weight of 4000 or 10000 and two different salts (dipotassium hydrogen phosphate or trisodium citrate 5-hydrate). The experimental data were obtained at temperatures of (293.15, 298.15, and 303.15) K. The effects of temperature, pH, polymer and salt concentrations, polymer molecular weight, and salt type on the partitioning of l-lysine HCl were also studied. The results showed that salt concentration has a significant effect on the partition constant while temperature has less effect. The Diamond and Hsu model was used to... 

    Selective voltammetric determination of d-penicillamine in the presence of tryptophan at a modified carbon paste electrode incorporating TiO2 nanoparticles and quinizarine

    , Article Journal of Electroanalytical Chemistry ; Volume 644, Issue 1 , Jan , 2010 , Pages 1-6 ; 15726657 (ISSN) Mazloum Ardakani, M ; Beitollahi, H ; Taleat, Z ; Naeimi, H ; Taghavinia, N ; Sharif University of Technology
    2010
    Abstract
    A carbon paste electrode (CPE) chemically modified with TiO2 nanoparticles and quinizarine (QZ) was used as a selective electrochemical sensor for the simultaneous determination of minor amounts of d-penicillamine (D-PA) and tryptophan (Trp). This modified electrode showed very efficient electrocatalytic activity for anodic oxidation of both d-PA and Trp. Substantial decreases of anodic overpotentials for both compounds made this analysis possible. Results of square wave voltammetry (SWV) using this modified electrode showed two well-resolved anodic waves for the oxidation of d-PA and Trp, which makes the simultaneous determination of both compounds possible. The peak potential for the... 

    Graphene oxide-l-arginine nanogel: A pH-sensitive fluorouracil nanocarrier

    , Article Biotechnology and Applied Biochemistry ; Volume 66, Issue 5 , 2019 , Pages 772-780 ; 08854513 (ISSN) Malekimusavi, H ; Ghaemi, A ; Masoudi, G ; Chogan, F ; Rashedi, H ; Yazdian, F ; Omidi, M ; Javadi, S ; Haghiralsadat, B. F ; Teimouri, M ; Faal Hamedani, N ; Sharif University of Technology
    Wiley-Blackwell Publishing Ltd  2019
    Abstract
    Nowadays, putting forward an accurate cancer therapy method with minimal side effects is an important topic of research. Nanostructures, for their ability in controlled and targeted drug release on specific cells, are critical materials in this field. In this study, a pH-sensitive graphene oxide-l-arginine nanogel was synthesized to carry and release 5-fluorouracil. Optimized conditions using statistical analysis, based on the maximum relative viscosity of nanogel, were evaluated: 5.489 for the concentration of l-arginine and 2.404 for pH. The prepared nanogels were characterized using scanning electron microscope and transmission electron microscope images and Fourier-transform infrared... 

    HELIOS: High-speed sequence alignment in optics

    , Article PLoS Computational Biology ; Volume 18, Issue 11 , 2022 ; 1553734X (ISSN) Maleki, E ; Akbari Rokn Abadi, S ; Koohi, S ; Sharif University of Technology
    Public Library of Science  2022
    Abstract
    In response to the imperfections of current sequence alignment methods, originated from the inherent serialism within their corresponding electrical systems, a few optical approaches for biological data comparison have been proposed recently. However, due to their low performance, raised from their inefficient coding scheme, this paper presents a novel all-optical high-throughput method for aligning DNA, RNA, and protein sequences, named HELIOS. The HELIOS method employs highly sophisticated operations to locate character matches, single or multiple mutations, and single or multiple indels within various biological sequences. On the other hand, the HELIOS optical architecture exploits... 

    An in vitro study of bare and poly(ethylene glycol)-co-fumarate-coated superparamagnetic iron oxide nanoparticles: A new toxicity identification procedure

    , Article Nanotechnology ; Volume 20, Issue 22 , 2009 ; 09574484 (ISSN) Mahmoudi, M ; Simchi, A ; Imani, M ; Milani, A. S ; Stroeve, P ; Sharif University of Technology
    2009
    Abstract
    As the use of superparamagnetic iron oxide nanoparticles (SPION) in biomedical applications increases (e.g. for targeting drug delivery and imaging), patients are likely to be exposed to products containing SPION. Despite their high biomedical importance, toxicity data for SPION are limited to date. The aim of this study is to investigate the cytotoxicity of SPION and its ability to change cell medium components. Bare and poly(ethylene glycol)-co-fumarate (PEGF)-coated SPION with narrow size distributions were synthesized. The particles were prepared by co-precipitation using ferric and ferrous salts with a molar Fe3+/Fe2+ ratio of 2. Dulbecco's modified Eagle's medium (DMEM) and primary... 

    Nanocomposite of functionalized halloysite and Ag(0) decorated magnetic carbon dots as a reusable catalyst for reduction of dyes in water

    , Article Journal of Physics and Chemistry of Solids ; Volume 152 , 2021 ; 00223697 (ISSN) Latifi Pour, M ; Kazemeini, M ; Sadjadi, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    A new magnetic, catalytic nanocomposite of Hal-MT-Cys-Ag/MNCD was fabricated and utilized for catalyzing reductive de-colorization of methyl orange and rhodamin B in aqueous media at room temperature. To prepare this material, Cl-functionalized halloysite nanoclay was successively reacted with melamine and 2,4,6-trichloro-1,3,5-triazine to furnish multi-nitrogen containing ligand on halloysite surface. Then, magnetic carbon dots were crafted through a facile method and decorated with Ag nanoparticles and cysteine to furnish Cys-Ag/MNCD species. The final nanocomposite was obtained via incorporation of this latter species onto functionalized halloysite. This new composite was characterized... 

    Development of a novel nano-sized anti-VEGFA nanobody with enhanced physicochemical and pharmacokinetic properties

    , Article Artificial Cells, Nanomedicine and Biotechnology ; 2017 , Pages 1-13 ; 21691401 (ISSN) Khodabakhsh, F ; Norouzian, D ; Vaziri, B ; Ahangari Cohan, R ; Sardari, S ; Mahboudi, F ; Behdani, M ; Mansouri, K ; Mehdizadeh, A ; Sharif University of Technology
    Abstract
    Since physiological and pathological processes occur at nano-environments, nanotechnology has considered as an efficient tool for designing of next generation specific biomolecules with enhanced pharmacodynamic and pharmacodynamic properties. In the current investigation, by control of the size and hydrodynamic volume at the nanoscale, for the first time, physicochemical and pharmacokinetic properties of an anti-VEGFA nanobody was remarkably improved by attachment of a Proline-Alanine-Serine (PAS) rich sequence. The results elucidated unexpected impressive effects of PAS sequence on physicochemical properties especially on size, hydrodynamics radius, and even solubility of nanobody. CD... 

    Development of a novel nano-sized anti-VEGFA nanobody with enhanced physicochemical and pharmacokinetic properties

    , Article Artificial Cells, Nanomedicine and Biotechnology ; Volume 46, Issue 7 , 2018 , Pages 1402-1414 ; 21691401 (ISSN) Khodabakhsh, F ; Norouzian, D ; Vaziri, B ; Ahangari Cohan, R ; Sardari, S ; Mahboudi, F ; Behdani, M ; Mansouri, K ; Mehdizadeh, A ; Sharif University of Technology
    Abstract
    Since physiological and pathological processes occur at nano-environments, nanotechnology has considered as an efficient tool for designing of next generation specific biomolecules with enhanced pharmacodynamic and pharmacodynamic properties. In the current investigation, by control of the size and hydrodynamic volume at the nanoscale, for the first time, physicochemical and pharmacokinetic properties of an anti-VEGFA nanobody was remarkably improved by attachment of a Proline-Alanine-Serine (PAS) rich sequence. The results elucidated unexpected impressive effects of PAS sequence on physicochemical properties especially on size, hydrodynamics radius, and even solubility of nanobody. CD... 

    New proline, alanine, serine repeat sequence for pharmacokinetic enhancement of anti-vegf single-domain antibody

    , Article Journal of Pharmacology and Experimental Therapeutics ; Volume 375, Issue 1 , July , 2020 , Pages 69-75 Khodabakhsh, F ; Salimian, M ; Mehdizadeh, A ; Khosravy, M. S ; Vafabakhsh, A ; Karami, E ; Cohan, R. A ; Sharif University of Technology
    American Society for Pharmacology and Experimental Therapy  2020
    Abstract
    Therapeutic fragmented antibodies show a poor pharmacokinetic profile that leads to frequent high-dose administration. In the current study, for the first time, a novel proline, alanine, serine (PAS) repeat sequence called PAS#208 was designed to extend the plasma half-life of a nanosized anti-vascular endothelial growth factor-A single-domain antibody. Polyacrylamide gel electrophoresis, circular dichroism, dynamic light scattering, and electrophoretic light scattering were used to assess the physicochemical properties of the newly designed PAS sequence. The effect of PAS#208 on the biologic activity of a single-domain antibody was studied using an in vitro proliferation assay. The... 

    Fast chromium removal by Shewanella sp.: an enzymatic mechanism depending on serine protease

    , Article International Journal of Environmental Science and Technology ; Volume 17, Issue 1 , April , 2020 , Pages 143-152 Kheirabadi, M ; Mahmoodi, R ; Mollania, N ; Kheirabadi, M ; Sharif University of Technology
    Springer  2020
    Abstract
    Environmental pollutions with heavy metals pose serious health and ecological risks. Sabzevar in the northeast of Iran has natural chromic mines and then chromium-polluted soils and groundwater. In the present work, the metal-tolerant bacterial strain KR2 was identified as Shewanella sp. following 16S rDNA gene sequence analysis. Bioremediation ability of isolated bacterial from agricultural soils that irrigated by groundwater, Shewanella sp., was evaluated for uptaking of chromium with varying Cr(VI) concentrations from 50 to 500 ppm in aerobic conditions (pH 7.0, 37 °C). The Shewanella sp. strain KR2 showed an obvious heavy metal tolerant in the wide range of heavy metals including: Cr6+,... 

    Measurement of activity coefficients of amino acids in aqueous electrolyte solutions: Experimental data for the systems (H2O + NaBr + glycine) and (H2O + NaBr + L-valine) at T = 298.15 K

    , Article Journal of Chemical Thermodynamics ; Volume 35, Issue 9 , 2003 , Pages 1553-1565 ; 00219614 (ISSN) Khavaninzadeh, A ; Modarress, H ; Taghikhani, V ; Khoshkbarchi, M. K ; Sharif University of Technology
    Academic Press  2003
    Abstract
    Electrochemical cells with two ion-selective electrodes, a cation ion-selective electrode against an anion ion-selective electrode, were used to measure the activity coefficient of amino acids in aqueous electrolyte solutions. Activity coefficient data were measured for (H2O + NaBr + glycine) and (H2O + NaBr + L-valine) at T = 298.15 K. The maximum concentrations of sodium bromide, glycine, and L-valine were (1.0, 2.4, and 0.4) mol · kg-1, respectively. The results show that the presence of an electrolyte and the nature of both the cation and the anion of the electrolyte have significant effects on the activity coefficients of amino acid in aqueous electrolyte solutions  

    Activity coefficients of electrolyte and amino acid in the systems (water + potassium chloride + DL-valine) at T = 298.15 K and (water + sodium chloride + L-valine) at T = 308.15 K

    , Article Journal of Chemical Thermodynamics ; Volume 34, Issue 8 , 2002 , Pages 1297-1309 ; 00219614 (ISSN) Khavaninzadeh, A ; Modarress, H ; Taghikhani, V ; Khoshkbarchi, M. K ; Sharif University of Technology
    2002
    Abstract
    The activity coefficient data were reported for (water + potassium chloride + DL-valine) at T = 298.15 K and (water + sodium chloride + L-valine) at T = 308.15 K. The measurements were performed in an electrochemical cell using ion-selective electrodes. The maximum concentrations of the electrolytes and the amino acids studied were 1.0 molality and 0.4 molality, respectively. The results of the activity coefficients of DL-valine are compared with the activity coefficients of DL-valine in (water + sodium chloride + DL-valine) system obtained from the previous study. The results show that the presence of an electrolyte and the nature of its cation have a significant effect on the activity... 

    Development of a nano biosensor for anti-gliadin detection for Celiac disease based on suspension microarrays

    , Article Biomedical Physics and Engineering Express ; Volume 6, Issue 5 , August , 2020 Kharati, M ; Rabiee, M ; Rostami Nejad, M ; Aghamohammadi, E ; Asadzadeh Aghdaei, H ; Zali, M. R ; Rabiee, N ; Fatahi, Y ; Bagherzadeh, M ; Webster, T. J ; Sharif University of Technology
    IOP Publishing Ltd  2020
    Abstract
    Celiac disease is an autoimmune disorder represented by the ingestion of the gluten protein usually found in wheat, barley and rye. To date, ELISA has been the most accurate method for determining the presence of anti-gliadin, which is cumbersome, expensive (compared to a suspension microarray technique), and requires extensive sample preparation. In this study, in order to establish a more accurate assay to identify gliadin at lower concentrations, optical nano biosensors using an indirect immunoassay method for gliadin detection was designed and fabricated. For this, polycaprolactone (PCL) nano- to micro-beads were fabricated as a platform for the gliadin antigen which were optimized and... 

    Production of l-asparaginase from Escherichia coli ATCC 11303: Optimization by response surface methodology

    , Article Food and Bioproducts Processing ; Volume 89, Issue 4 , Oct , 2011 , Pages 315-321 ; 09603085 (ISSN) Kenari, S. L. D ; Alemzadeh, I ; Maghsodi, V ; Sharif University of Technology
    2011
    Abstract
    This paper discusses the studies carried out for the optimal production of enzyme l-asparaginase (l-asparagine amidohydrolase, EC 3.5.1.1) from Escherichia coli (ATCC 11303). It was found that inoculum age of 18 h and inoculum size of 10% were the most favorable operating conditions for enzyme production. Lactose, yeast extract and KH 2PO 4 were found to be the best carbon, nitrogen and ion sources, respectively. Statistical method was used to survey how various medium conditions affect the enzyme production. By response surface methodology, the values of lactose, tryptone, yeast extract, KH 2PO 4 and l-asparagine concentration were investigated to obtain the maximum enzyme activity. The... 

    Immobilization of α -chymotrypsin on the surface of magnetic/gold core/shell nanoparticles

    , Article Journal of Nanotechnology ; Volume 2013 , 2013 ; 16879503 (ISSN) Kamal Ahmadi, M ; Vossoughi, M ; Sharif University of Technology
    Hindawi Publishing Corporation  2013
    Abstract
    Over the last decade, nanoparticles used as protein carriers have opened new avenues for a variety of biomedical applications. The main concern for these applications is changes in biological activity of immobilized proteins due to conformational changes on the surface of the carrier. To evaluate this concern, the preparation and biocatalyst activity of α-chymotrypsin-Fe 3O4 @ Au core/shell nanoparticles were investigated. First, Fe3O4 @ Au core/shell nanoparticles were synthesized by coprecipitation method and citrate reduction of HAuCl 4. TEM imaging revealed a core size of 13 ± 3 nm and a shell thickness of 4 ± 1 nm for synthesized nanoparticles. X-ray diffraction (XRD) was used to study... 

    Design of amino acid- and carbohydrate-based anticancer drugs to inhibit polymerase η

    , Article Scientific Reports ; Volume 12, Issue 1 , 2022 ; 20452322 (ISSN) Kalhor, S ; Fattahi, A ; Sharif University of Technology
    Nature Research  2022
    Abstract
    DNA polymerase η (polη) is of significant value for designing new families of anticancer drugs. This protein takes a role in many stages of the cell cycle, including DNA replication, translesion DNA synthesis, and the repairing process of DNA. According to many studies, a high level of expression of polη in most cases has been associated with low rates of patients' survival, regardless of considering the stage of tumor cells. Thus, the design of new drugs with fewer side effects to inhibit polη in cancerous cells has attracted attention in recent years. This project aims to design and explore the alternative inhibitors for polη, which are based on carbohydrates and amino acids. In terms of... 

    In silico design of novel anticancer drugs with amino acid and carbohydrate building blocks to inhibit PIM kinases

    , Article Molecular Simulation ; Volume 48, Issue 6 , 2022 , Pages 526-540 ; 08927022 (ISSN) Kalhor, S ; Fattahi, A ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    PIM-1 is a serine-threonine kinase mainly expressed in tissues like the Thymus, spleen, bone marrow, and liver. Overexpression of PIM kinases occurs in various types of human tumours, such as lymphomas, prostate cancer, and oral cancer. As a result, the design of drugs to inhibit PIM-1 in cancerous cells has attracted much attention in recent years. This study aimed to design the alternative inhibitors for PIM-1 kinase, which are based on carbohydrates and amino acids and are expected to be non-toxic with the same chemotherapeutic effects as the traditional known anticancer drugs. The combinatorial use of quantum mechanics (QM) and molecular dynamic simulation (MD) has enabled us to... 

    Investigating the effects of amino acid-based surface modification of carbon nanoparticles on the kinetics of insulin amyloid formation

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 176 , 2019 , Pages 471-479 ; 09277765 (ISSN) Kalhor, H. R ; Yahyazadeh, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Surface functionality of nanoparticles has been pivotal in defining interactions of nanoparticles and biomolecules. To explore various functionalities on the surface of nanoparticle through a facile procedure, various carbon-based nanoparticles, modified with a specific natural amino acid, were synthesized; the amino acids were chosen in order that almost all classes of amino acids were included. After characterizations of the nanoparticles using several spectroscopic methods, the effects of surface modification of nanoparticles were examined against amyloid formation, exploiting insulin as a model amyloidogenic polypeptide. Although most amino acids afforded carbon nanoparticles, only... 

    Green products from herbal medicine wastes by subcritical water treatment

    , Article Journal of Hazardous Materials ; Volume 424 , 2022 ; 03043894 (ISSN) Jouyandeh, M ; Tavakoli, O ; Sarkhanpour, R ; Sajadi, S. M ; Zarrintaj, P ; Rabiee, N ; Akhavan, O ; Lima, E. C ; Saeb, M. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Herbal medicine wastes (HMWs) are byproducts of medicine factories, which are mainly landfilled for their environmental problems. Only bearing in mind the contamination and concerns caused by the COVID-19 pandemic and environmental emissions, the worth of herbal medicine wastes management and conversion to green products can be understood. In this work, subcritical water treatment was carried out batch-wise in a stainless tube reactor in the pressure range of 0.792–30.0 MPa, varying the temperature (127–327 °C) and time (1–60 min) of extraction. This resulted in new and green material sources, including organic acids, amino acids, and sugars. Amazingly, at very low extraction times (below 5... 

    Design of peptide-based inhibitor agent against amyloid-β aggregation: Molecular docking, synthesis and in vitro evaluation

    , Article Bioorganic Chemistry ; Volume 102 , September , 2020 Jokar, S ; Erfani, M ; Bavi, O ; Khazaei, S ; Sharifzadeh, M ; Hajiramezanali, M ; Beiki, D ; Shamloo, A ; Sharif University of Technology
    Academic Press Inc  2020
    Abstract
    Formation of the amyloid beta (Aβ) peptide aggregations represents an indispensable role in appearing and progression of Alzheimer disease. β-sheet breaker peptides can be designed and modified with different amino acids in order to improve biological properties and binding affinity to the amyloid beta peptide. In the present study, three peptide sequences were designed based on the hopeful results of LIAIMA peptide and molecular docking studies were carried out onto the monomer and fibril structure of amyloid beta peptide using AutoDock Vina software. According to the obtained interactions and binding energy from docking, the best-designed peptide (D-GABA-FPLIAIMA) was chosen and...