Loading...
Search for: amino-acids
0.006 seconds
Total 140 records

    Measurement of activity coefficients of amino acids in aqueous electrolyte solutions: Experimental data for the systems (H2O + NaBr + glycine) and (H2O + NaBr + L-valine) at T = 298.15 K

    , Article Journal of Chemical Thermodynamics ; Volume 35, Issue 9 , 2003 , Pages 1553-1565 ; 00219614 (ISSN) Khavaninzadeh, A ; Modarress, H ; Taghikhani, V ; Khoshkbarchi, M. K ; Sharif University of Technology
    Academic Press  2003
    Abstract
    Electrochemical cells with two ion-selective electrodes, a cation ion-selective electrode against an anion ion-selective electrode, were used to measure the activity coefficient of amino acids in aqueous electrolyte solutions. Activity coefficient data were measured for (H2O + NaBr + glycine) and (H2O + NaBr + L-valine) at T = 298.15 K. The maximum concentrations of sodium bromide, glycine, and L-valine were (1.0, 2.4, and 0.4) mol · kg-1, respectively. The results show that the presence of an electrolyte and the nature of both the cation and the anion of the electrolyte have significant effects on the activity coefficients of amino acid in aqueous electrolyte solutions  

    A new model for predicting activity coefficients in aqueous solutions of amino acids and peptides

    , Article Journal of Chemical Thermodynamics ; Volume 35, Issue 1 , 2003 , Pages 101-112 ; 00219614 (ISSN) Mortazavi Manesh, S ; Ghotbi, C ; Taghikhani, V ; Sharif University of Technology
    2003
    Abstract
    A new two-parameter model based on the perturbation of a hard-sphere reference has been developed to correlate the activity coefficients of several amino acids and simple peptides in aqueous solutions. The hard-sphere equation of state used as the reference in the model was proposed recently by Ghotbi and Vera. The perturbation terms coupled with the reference hard-sphere equation of state are attributed to the dispersion forces and the dipole-dipole interactions. The Lennard-Jones and Keesom potential functions are used to represent the dispersion and dipole-dipole interactions, respectively. The results of the new model are compared with those obtained by other models. It is shown that the... 

    Activity coefficients of electrolyte and amino acid in the systems (water + potassium chloride + DL-valine) at T = 298.15 K and (water + sodium chloride + L-valine) at T = 308.15 K

    , Article Journal of Chemical Thermodynamics ; Volume 34, Issue 8 , 2002 , Pages 1297-1309 ; 00219614 (ISSN) Khavaninzadeh, A ; Modarress, H ; Taghikhani, V ; Khoshkbarchi, M. K ; Sharif University of Technology
    2002
    Abstract
    The activity coefficient data were reported for (water + potassium chloride + DL-valine) at T = 298.15 K and (water + sodium chloride + L-valine) at T = 308.15 K. The measurements were performed in an electrochemical cell using ion-selective electrodes. The maximum concentrations of the electrolytes and the amino acids studied were 1.0 molality and 0.4 molality, respectively. The results of the activity coefficients of DL-valine are compared with the activity coefficients of DL-valine in (water + sodium chloride + DL-valine) system obtained from the previous study. The results show that the presence of an electrolyte and the nature of its cation have a significant effect on the activity... 

    Design of Methods for Synthesis and Immobilization of Nitrogen Ligands Such as Pyridine onto the Mesoporous Silica Nanoparticles and Design of Pharmaceutical Structures Based on Amino Acids and Carbohydrates to Inhibit Polymerase Η for the Treatment of Leukemia and their Applications In Resins and Ionic Liquids

    , Ph.D. Dissertation Sharif University of Technology Kalhor, Sepideh (Author) ; Matloubi Moghaddam, Firouz (Supervisor) ; Fattahi, Alireza (Supervisor)
    Abstract
    1- Mesoporous silica materials have been found to possess pore sizes ranging from 2 -10 nm alongside 2D-hexagonal and 3D-cubic structural features. The specific properties of nanoparticles of the mesoporous silica family, such as the collected size, porosity, morphology, and high chemical stability, make them among the best drug delivery systems and catalysts. Designing the catalysts with advanced structures that effectively locate the transition metals and create active centres onto the surfaces of mesoporous silica materials has attracted extraordinary attention. According to many studies, mesoporous silica materials without organic functional groups cannot be used as catalysts in chemical... 

    Application of Cellulose Nanofibers Coated Quartz Crystal Microbalance (QCM)Biosensor for Amino Acid Detection in Aqueous Media

    , Ph.D. Dissertation Sharif University of Technology Hosseini, Marzieh Sadat (Author) ; Iraji Zad, Azam (Supervisor) ; Vossoughi, Manouchehr (Supervisor)
    Abstract
    Developing a simple, cost effective and accurate detection method for L-lysine (Lys), L-leucine (Leu) and glycine (Gly) as the important analytes in clinical diagnostics, biological processes and food industries is of great interest. Therefore, in the first part of this research, cellulose nanofibrils (CNFs) were coated on a quartz crystal microbalance (QCM) surface by spin coating to achieve a QCM biodetector for Gly. Thus, the two-layer CNFs coating was selected as sensing film and was applied for following experiments. In the next step, the coated QCMs were carefully characterized before and after interaction with Gly using water contact angle (WCA), Fourier transform infrared... 

    Design and Computational Evaluation of Sugar-Amino Acid Conjugates as CK2α Inhibitor

    , M.Sc. Thesis Sharif University of Technology Nonanal Nahr, Milad (Author) ; Fattahi, Alireza (Supervisor)
    Abstract
    The aim of this study is to devise innovative compounds that impede the function of CK2α enzyme by incorporating amino acids and sugars into their molecular structure. CK2α, a catalytic subunit of CK2 enzyme, operates autonomously and is the only continuously active kinase that does not require an upstream regulator. Emerging evidence highlights CK2α's crucial role in various cancers and infectious diseases, including Covid-19, indicating that suppressing its function could provide a promising approach to improve patient outcomes. To accomplish this objective, the drug design process must take into account both pharmacokinetic and pharmacodynamic properties. Pharmacokinetics, encompassing... 

    Application of Cellulose Nanofibers Coated Quartz Crystal Microbalance (QCM) Biosensor for Amino Acid Detection in Aqueous Media

    , Ph.D. Dissertation Sharif University of Technology Hosseini, Marzieh Sadat (Author) ; Irajizad, Azam (Supervisor) ; Vossoughi, Manouchehr (Supervisor)
    Abstract
    Developing a simple, cost effective and accurate detection method for L-lysine (Lys), L-leucine (Leu) and glycine (Gly) as the important analytes in clinical diagnostics, biological processes and food industries is of great interest. Therefore, in the first part of this research, cellulose nanofibrils (CNFs) were coated on a quartz crystal microbalance (QCM) surface by spin coating to achieve a QCM biodetector for Gly. Thus, the two-layer CNFs coating was selected as sensing film and was applied for following experiments. In the next step, the coated QCMs were carefully characterized before and after interaction with Gly using water contact angle (WCA), Fourier transform infrared... 

    Preparation of Thin-Film Nanocomposite Membranes Based on Metal-Organic Frameworks (Mofs) and Study of their Performance in Forward Osmosis (Fo) Process

    , Ph.D. Dissertation Sharif University of Technology Bayrami, Arshad (Author) ; Bagherzadeh, Mojtaba (Supervisor)
    Abstract
    The forward osmosis (FO) process is a high potential emerging membrane process in the seawater desalination and contaminated water treatment fields. One of the main challenges facing this process is the weak separation (high reverse solute flux, low water flux, and insufficient selectivity) and antifouling performances of its membranes. Various sections of this study focus on the development of FO membranes and their performance improvement. For this purpose, thin-film composite membranes with the same combination of polyethersulfone/polyamide (PES/PA) have been used to investigate the effect of metal-organic frameworks (MOFs) introduction on their performance. The support layer in all cases... 

    Toward visual chiral recognition of amino acids using a wide-range color tonality ratiometric nanoprobe

    , Article Analytica Chimica Acta ; Volume 1231 , 2022 ; 00032670 (ISSN) Jafar Nezhad Ivrigh, Z ; Fahimi Kashani, N ; Morad, R ; Jamshidi, Z ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Chiral recognition has long been a challenging issue to deal with in biological systems, drug design and food authentication. Implementing nanoparticle-based probes with intrinsic or induced chirality in this field has addressed several issues concerning sensitivity, reliability, rapidness and the cost of chiral sensing platforms. Yet, research into chiral nanoprobes that can be used for visual monitoring of chiral substances is still in its infancy. As part of this study, a visual chiral recognition platform has been developed in which a combination of blue-emitting carbon dots (BCDs) and mercaptopropionic acid-capped CdTe quantum dots (MPA-QDs) with inherent chiroptical activity were... 

    HELIOS: High-speed sequence alignment in optics

    , Article PLoS Computational Biology ; Volume 18, Issue 11 , 2022 ; 1553734X (ISSN) Maleki, E ; Akbari Rokn Abadi, S ; Koohi, S ; Sharif University of Technology
    Public Library of Science  2022
    Abstract
    In response to the imperfections of current sequence alignment methods, originated from the inherent serialism within their corresponding electrical systems, a few optical approaches for biological data comparison have been proposed recently. However, due to their low performance, raised from their inefficient coding scheme, this paper presents a novel all-optical high-throughput method for aligning DNA, RNA, and protein sequences, named HELIOS. The HELIOS method employs highly sophisticated operations to locate character matches, single or multiple mutations, and single or multiple indels within various biological sequences. On the other hand, the HELIOS optical architecture exploits... 

    Design of amino acid- and carbohydrate-based anticancer drugs to inhibit polymerase η

    , Article Scientific Reports ; Volume 12, Issue 1 , 2022 ; 20452322 (ISSN) Kalhor, S ; Fattahi, A ; Sharif University of Technology
    Nature Research  2022
    Abstract
    DNA polymerase η (polη) is of significant value for designing new families of anticancer drugs. This protein takes a role in many stages of the cell cycle, including DNA replication, translesion DNA synthesis, and the repairing process of DNA. According to many studies, a high level of expression of polη in most cases has been associated with low rates of patients' survival, regardless of considering the stage of tumor cells. Thus, the design of new drugs with fewer side effects to inhibit polη in cancerous cells has attracted attention in recent years. This project aims to design and explore the alternative inhibitors for polη, which are based on carbohydrates and amino acids. In terms of... 

    SPR-based assay kit for rapid determination of Pb2+

    , Article Analytica Chimica Acta ; Volume 1220 , 2022 ; 00032670 (ISSN) Amirjani, A ; Kamani, P ; Madaah Hosseini, H. R ; Sadrnezhaad, S. K ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    A recyclable optical nanosensor was developed by immobilizing L-tyrosine functionalized silver nanoparticles (AgNPs) on the polyethylene terephthalate (PET) substrate for rapid determination of Pb2+ ions. At first, the L-tyrosine functionalized AgNPs were assessed in the solution phase; the response time was lower than 15 s, and a limit of detection lower than 9 nM was obtained in the dynamic range of 1–1000 nM. For fabrication of the optical assay kit, the design of experiment (DOE) was used to optimize the immobilization efficiency of the nanoparticles on PET films by studying AgNO3 concentration and pH as two crucial parameters. The assay kit in optimal conditions showed a sharp localized... 

    Design of Drug Structures in Order to Inhibit Met, A Member of the Tyrosine Phosphatase Protein Family to Replace Existing Drugs

    , M.Sc. Thesis Sharif University of Technology Zeinal, Mostafa (Author) ; Fattahi, Alireza (Supervisor)
    Abstract
    This project aims to design a novel structure that can inhibit the activitvation of the c-Met enzyme using amino acids and sugars building blocks. The c-Met enzyme is a receptor tyrosine kinase that plays a significant role in several biological activities such as cell proliferation, survival, and invasion. Abnormal activity of the enzyme is linked to the progression of various types of cancer, including breast, lung, liver, and stomach cancer. The proposed sugar amino acid conjugate structures is expected to increase stability amino acids and dipeptides in the physiological environment, improve membrane permeability via active transport mechanism, and reduce toxicity and side effects by... 

    Simple SPR-based colorimetric sensor to differentiate Mg2+ and Ca2+ in aqueous solutions

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 268 , 2022 ; 13861425 (ISSN) Amirjani, A ; Salehi, K ; Sadrnezhaad, S. K ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    L-tryptophan functionalized AgNPs were successfully fabricated using a one-pot synthesis method and assessed as a colorimetric probe for rapid and accurate determination of Mg2+ ions. The developed sensor showed a selective response towards Mg2+ with no interference from Ca2+ in the wide concentration range of 1–200 µM. The sensor's response was optimized in the pH range of 9–10, which can be attributed to the protonation of amine groups and their interaction with Mg2+ ions. The stability and selectivity of the sensor were examined in different salt (NaCl) and other metal ions, respectively. The L-tryptophan-AgNPs sensor detected Mg2+ with the limit of detection of 3 µM, which is way lower... 

    In silico design of novel anticancer drugs with amino acid and carbohydrate building blocks to inhibit PIM kinases

    , Article Molecular Simulation ; Volume 48, Issue 6 , 2022 , Pages 526-540 ; 08927022 (ISSN) Kalhor, S ; Fattahi, A ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    PIM-1 is a serine-threonine kinase mainly expressed in tissues like the Thymus, spleen, bone marrow, and liver. Overexpression of PIM kinases occurs in various types of human tumours, such as lymphomas, prostate cancer, and oral cancer. As a result, the design of drugs to inhibit PIM-1 in cancerous cells has attracted much attention in recent years. This study aimed to design the alternative inhibitors for PIM-1 kinase, which are based on carbohydrates and amino acids and are expected to be non-toxic with the same chemotherapeutic effects as the traditional known anticancer drugs. The combinatorial use of quantum mechanics (QM) and molecular dynamic simulation (MD) has enabled us to... 

    Thin-film nanocomposite membranes containing aspartic acid-modified MIL-53-NH2 (Al) for boosting desalination and anti-fouling performance

    , Article Desalination ; Volume 521 , 2022 ; 00119164 (ISSN) Bayrami, A ; Bagherzadeh, M ; Navi, H ; Chegeni, M ; Hosseinifard, M ; Amini, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In the current study, the prospect improvements on desalination and anti-fouling performance of polyamide (PA)-based TFN membranes modified with MIL-53-NH-Asp have been investigated. MIL-53-NH2 nanoparticles (NPs) have been treated through a single-step post-synthesis modification reaction to enhance the hydrophilicity feature and compatibility with the PA layer. Various concentrations of synthesized NPs were dispersed in an aqueous phase consisting m-phenylenediamine and 2,6-diaminopyridine monomers for incorporation in the PA rejection layer. Analysis data of fabricated membranes provide evidence of changes in their physico-chemical properties after NPs incorporation. In comparison with... 

    Effect of cysteine oxidation in SARS-CoV-2 receptor-binding domain on its interaction with two cell receptors: Insights from atomistic simulations

    , Article Journal of Chemical Information and Modeling ; Volume 62, Issue 1 , 2022 , Pages 129-141 ; 15499596 (ISSN) Ghasemitarei, M ; Privat Maldonado, A ; Yusupov, M ; Rahnama, S ; Bogaerts, A ; Ejtehadi, M. R ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Binding of the SARS-CoV-2 S-glycoprotein to cell receptors is vital for the entry of the virus into cells and subsequent infection. ACE2 is the main cell receptor for SARS-CoV-2, which can attach to the C-terminal receptor-binding domain (RBD) of the SARS-CoV-2 S-glycoprotein. The GRP78 receptor plays an anchoring role, which attaches to the RBD and increases the chance of other RBDs binding to ACE2. Although high levels of reactive oxygen and nitrogen species (RONS) are produced during viral infections, it is not clear how they affect the RBD structure and its binding to ACE2 and GRP78. In this research, we apply molecular dynamics simulations to study the effect of oxidation of the highly... 

    Visual recognition of tryptophan enantiomers using chiral self assemblies of quantum DOTS

    , Article ACS Applied Nano Materials ; Volume 5, Issue 1 , 2022 , Pages 1460-1471 ; 25740970 (ISSN) Fahimi-Kashani, N ; Jafar Nezhad Ivrigh, Z ; Bigdeli, A ; Hormozi Nezhad, M. R ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Discrimination of chiral targets is generally achieved with chiral nanomaterials. However, the limited number of intrinsic chiral nanostructures as well as their complex synthesis procedure has led to the production of chirality-induced nanomaterials as alternatives. Chirality can be induced in nanomaterials by either chirality transfer or the formation of chiral assemblies. Using the latter approach, in this work, we have provided chiral supramolecular assemblies of CdTe quantum dots (QDs) from achiral starting materials. CTAB-QD assemblies showed chiroptical activities, and their orange emission in combination with the blue emission of carbon dots was utilized as a ratiometric chiral... 

    Green products from herbal medicine wastes by subcritical water treatment

    , Article Journal of Hazardous Materials ; Volume 424 , 2022 ; 03043894 (ISSN) Jouyandeh, M ; Tavakoli, O ; Sarkhanpour, R ; Sajadi, S. M ; Zarrintaj, P ; Rabiee, N ; Akhavan, O ; Lima, E. C ; Saeb, M. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Herbal medicine wastes (HMWs) are byproducts of medicine factories, which are mainly landfilled for their environmental problems. Only bearing in mind the contamination and concerns caused by the COVID-19 pandemic and environmental emissions, the worth of herbal medicine wastes management and conversion to green products can be understood. In this work, subcritical water treatment was carried out batch-wise in a stainless tube reactor in the pressure range of 0.792–30.0 MPa, varying the temperature (127–327 °C) and time (1–60 min) of extraction. This resulted in new and green material sources, including organic acids, amino acids, and sugars. Amazingly, at very low extraction times (below 5... 

    An accurate alignment-free protein sequence comparator based on physicochemical properties of amino acids

    , Article Scientific Reports ; Volume 12, Issue 1 , 2022 ; 20452322 (ISSN) Akbari Rokn Abadi, S ; Abdosalehi, A. S ; Pouyamehr, F ; Koohi, S ; Sharif University of Technology
    Nature Research  2022
    Abstract
    Bio-sequence comparators are one of the most basic and significant methods for assessing biological data, and so, due to the importance of proteins, protein sequence comparators are particularly crucial. On the other hand, the complexity of the problem, the growing number of extracted protein sequences, and the growth of studies and data analysis applications addressing protein sequences have necessitated the development of a rapid and accurate approach to account for the complexities in this field. As a result, we propose a protein sequence comparison approach, called PCV, which improves comparison accuracy by producing vectors that encode sequence data as well as physicochemical properties...