Loading...
Search for:
animal-experiment
0.007 seconds
Total 53 records
A microfabricated platform for the study of chondrogenesis under different compressive loads
, Article Journal of the Mechanical Behavior of Biomedical Materials ; Volume 78 , 2018 , Pages 404-413 ; 17516161 (ISSN) ; Jahanbakhsh, A ; Saidi, M. S ; Bonakdar, S ; Sharif University of Technology
Elsevier Ltd
2018
Abstract
Microfluidic devices are beneficial in miniaturizing and multiplexing various cellular assays in a single platform. Chondrogenesis is known to pertain to chemical, topographical, and mechanical cues in the microenvironment. Mechanical cues themselves have numerous parameters such as strain magnitude, frequency, and stimulation time. Effects of different strain magnitudes on the chondrogenic differentiation of adult stem cells have not been explored thoroughly. Here, a new multilayer microdevice is presented for the unidirectional compressive stimulation of cells in a three-dimensional cell culture. Numerical simulations were performed to evaluate and optimize the design. Results showed a...
A comparative study of wound dressings loaded with silver sulfadiazine and silver nanoparticles: In vitro and in vivo evaluation
, Article International Journal of Pharmaceutics ; Volume 564 , 2019 , Pages 350-358 ; 03785173 (ISSN) ; Shamloo, A ; Aghababaie, Z ; Afjoul, H ; Abdi, S ; Moravvej, H ; Vossoughi, M ; Sharif University of Technology
Elsevier B.V
2019
Abstract
In the current study, two series of antimicrobial dressings conjugated with silver sulfadiazine (SSD) and silver nanoparticles (AgNPs) were developed and evaluated for chronic wound healing. Highly porous polycaprolactone (PCL)/polyvinyl alcohol (PVA) nanofibers were loaded with different concentrations of SSD or AgNPs and compared comprehensively in vitro and in vivo. SSD and AgNPs indicated a strong and equal antimicrobial activity against S. aureus. However, SSD had more toxicity against fibroblast cells over one week in vitro culture. An in vivo model of wound healing on male Wistar rats was developed with a full thickness wound. All the wound dressings indicated enough flexibility and...
Synthesis of a novel magnetic starch-alginic acid-based biomaterial for drug delivery
, Article Carbohydrate Research ; Volume 487 , 2020 ; Forouzandehdel, S ; Rezghi Rami, M ; Sharif University of Technology
Elsevier Ltd
2020
Abstract
The magnetic composite hydrogel was fabricated by the graft copolymerization of itaconic acid (IA) onto starch and Alginic acid in the presence graphene sheets (Gr) and Fe3O4 nanoparticles (Fe3O4@Gr-IA/St-Alg) for Guaifenesin (GFN) delivery and wound healing. The Fe3O4@Gr-IA/St-Alg biomaterial is a hydrogel network endowed the material with magnetic property. In addition, GFN not only achieved effectively bound to the magnetic hydrogel, but also released in a controlled manner. The using external magnetic field has significantly positive influence on the drug release rate. To close, these hydrogel drug carriers offer a favorable platform for magnetically targeted drug delivery as well as a...
Fabrication and evaluation of a bilayer hydrogel-electrospinning scaffold prepared by the freeze-gelation method
, Article Journal of Biomechanics ; Volume 98 , 2020 ; Shamloo, A ; Sharif University of Technology
Elsevier Ltd
2020
Abstract
This study presents a bilayer structure as a skin scaffold comprised of an electrospun sheet layer made of polycaprolactone and polyvinil alcohol and a porous hydrogel layer made of chitosan and gelatin. The hydrogel layer was fabricated by employing the freeze-gelation technique. The bilayer structure was achieved by pouring the hydrogel solution on the electrospun sheet at the bottom of a mold followed by the freeze-gelation technique to obtain a porous structure in the hydrogel. The hydrogel and hydrogel-electrospun samples were characterized by scanning electron microscopy, swelling, tensile strength, in vitro and in vivo analyses. From a mechanical strength standpoint, the combination...
Oncolytic newcastle disease virus delivered by mesenchymal stem cells-engineered system enhances the therapeutic effects altering tumor microenvironment
, Article Virology Journal ; Volume 17, Issue 1 , 2020 ; Ebrahimzadeh, M. S ; Miri, S. M ; Dianat Moghadam, H ; Ghorbanhosseini, S. S ; Mohebbi, S. R ; Keyvani, H ; Ghaemi, A ; Sharif University of Technology
BioMed Central Ltd
2020
Abstract
Background: Human papillomavirus (HPV)-associated malignancy remain a main cause of cancer in men and women. Cancer immunotherapy has represented great potential as a new promising cancer therapeutic approach. Here, we report Mesenchymal stem cells (MSCs) as a carrier for the delivery of oncolytic Newcastle disease virus (NDV) for the treatment of HPV-associated tumor. Methods: For this purpose, MSCs obtained from the bone marrow of C57BL mice, then cultured and characterized subsequently by the flow cytometry analysis for the presence of cell surface markers. In this study, we sought out to determine the impacts of MSCs loaded with oncolytic NDV on splenic T cell and cytokine immune...
Synergy between hemagglutinin 2 (HA2) subunit of influenza fusogenic membrane glycoprotein and oncolytic Newcastle disease virus suppressed tumor growth and further enhanced by Immune checkpoint PD-1 blockade
, Article Cancer Cell International ; Volume 20, Issue 1 , August , 2020 ; Ebrahimzadeh, M. S ; Abdolalipour, E ; Yazdi, M ; Hosseini Ravandi, H ; Ghaemi, A ; Sharif University of Technology
BioMed Central Ltd
2020
Abstract
Background: Newcastle disease virus (NDV) has shown noticeable oncolytic properties, especially against cervical cancer. However, in order to improve the spread rate and oncotoxicity of the virus, employment of other therapeutic reagents would be helpful. It has been shown that some viral fusogenic membrane glycoproteins (FMGs) could facilitate viral propagation and increase the infection rate of tumor cells by oncolytic viruses. Additionally, immune checkpoint blockade has widely been investigated for its anti-tumor effects against several types of cancers. Here, we investigated for the first time whether the incorporation of influenza hemagglutinin-2 (HA2) FMG could improve the oncolytic...
Homozygous mutations in C14orf39/SIX6OS1 cause non-obstructive azoospermia and premature ovarian insufficiency in humans
, Article American Journal of Human Genetics ; Volume 108, Issue 2 , 2021 , Pages 324-336 ; 00029297 (ISSN) ; Jiao, Y ; Khan, R ; Jiang, X ; Javed, A. R ; Ali, A ; Zhang, H ; Zhou, J ; Naeem, M ; Murtaza, G ; Li, Y ; Yang, G ; Zaman, Q ; Zubair, M ; Guan, H ; Zhang, X ; Ma, H ; Jiang, H ; Ali, H ; Dil, S ; Shah, W ; Ahmad, N ; Zhang, Y ; Shi, Q ; Sharif University of Technology
Cell Press
2021
Abstract
Human infertility is a multifactorial disease that affects 8%–12% of reproductive-aged couples worldwide. However, the genetic causes of human infertility are still poorly understood. Synaptonemal complex (SC) is a conserved tripartite structure that holds homologous chromosomes together and plays an indispensable role in the meiotic progression. Here, we identified three homozygous mutations in the SC coding gene C14orf39/SIX6OS1 in infertile individuals from different ethnic populations by whole-exome sequencing (WES). These mutations include a frameshift mutation (c.204_205del [p.His68Glnfs∗2]) from a consanguineous Pakistani family with two males suffering from non-obstructive...
Rhythmic air-puff into nasal cavity modulates activity across multiple brain areas: A non-invasive brain stimulation method to reduce ventilator-induced memory impairment
, Article Respiratory Physiology and Neurobiology ; Volume 287 , 2021 ; 15699048 (ISSN) ; Salimi, M ; Nazari, M ; Garousi, M ; Tabasi, F ; Dehdar, K ; Salimi, A ; Jamaati, H ; Mirnajafi Zadeh, J ; Arabzadeh, E ; Raoufy, M. R ; Sharif University of Technology
Elsevier B.V
2021
Abstract
Mechanical ventilation (MV) can result in long-term brain impairments that are resistant to treatment. The mechanisms underlying MV-induced brain function impairment remain unclear. Since nasal airflow modulates brain activity, here we evaluated whether reinstating airflow during MV could influence the memory performance of rats after recovery. Rats were allocated into two study groups: one group received rhythmic air-puff into the nasal cavity during MV and a control group that underwent ventilation without air-puff. During MV, air-puffs induced time-locked event potentials in OB, mPFC and vHPC and significantly increased the oscillatory activity at the air-puff frequency. Furthermore, in...
Temporary skin grafts based on hybrid graphene oxide-natural biopolymer nanofibers as effective wound healing substitutes: pre-clinical and pathological studies in animal models
, Article Journal of Materials Science: Materials in Medicine ; Volume 28, Issue 5 , 2017 , 73 ; 09574530 (ISSN) ; Eslahi, N ; Mehdipour, A ; Mohammadi, M ; Akbari, M ; Samadikuchaksaraei, A ; Simchi, A ; Sharif University of Technology
Springer New York LLC
2017
Abstract
Abstract: In recent years, temporary skin grafts (TSG) based on natural biopolymers modified with carbon nanostructures have received considerable attention for wound healing. Developments are required to improve physico-mechanical properties of these materials to match to natural skins. Additionally, in-deep pre-clinical examinations are necessary to ensure biological performance and toxicity effect in vivo. In the present work, we show superior acute-wound healing effect of graphene oxide nanosheets embedded in ultrafine biopolymer fibers (60 nm) on adult male rats. Nano-fibrous chitosan-based skin grafts crosslinked by Genepin with physico-mechanical properties close to natural skins were...
Development of a novel nano-sized anti-VEGFA nanobody with enhanced physicochemical and pharmacokinetic properties
, Article Artificial Cells, Nanomedicine and Biotechnology ; Volume 46, Issue 7 , 2018 , Pages 1402-1414 ; 21691401 (ISSN) ; Norouzian, D ; Vaziri, B ; Ahangari Cohan, R ; Sardari, S ; Mahboudi, F ; Behdani, M ; Mansouri, K ; Mehdizadeh, A ; Sharif University of Technology
Abstract
Since physiological and pathological processes occur at nano-environments, nanotechnology has considered as an efficient tool for designing of next generation specific biomolecules with enhanced pharmacodynamic and pharmacodynamic properties. In the current investigation, by control of the size and hydrodynamic volume at the nanoscale, for the first time, physicochemical and pharmacokinetic properties of an anti-VEGFA nanobody was remarkably improved by attachment of a Proline-Alanine-Serine (PAS) rich sequence. The results elucidated unexpected impressive effects of PAS sequence on physicochemical properties especially on size, hydrodynamics radius, and even solubility of nanobody. CD...
Chemometrics comparison of gas chromatography with mass spectrometry and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry Daphnia magna metabolic profiles exposed to salinity
, Article Journal of Separation Science ; Volume 41, Issue 11 , 2018 , Pages 2368-2379 ; 16159306 (ISSN) ; Garreta Lara, E ; Campos, B ; Barata, C ; Lacorte, S ; Tauler, R ; Sharif University of Technology
Wiley-VCH Verlag
2018
Abstract
The performances of gas chromatography with mass spectrometry and of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry are examined through the comparison of Daphnia magna metabolic profiles. Gas chromatography with mass spectrometry and comprehensive two-dimensional gas chromatography with mass spectrometry were used to compare the concentration changes of metabolites under saline conditions. In this regard, a chemometric strategy based on wavelet compression and multivariate curve resolution–alternating least squares is used to compare the performances of gas chromatography with mass spectrometry and comprehensive two-dimensional gas chromatography with...
Delivery of melittin-loaded niosomes for breast cancer treatment: an in vitro and in vivo evaluation of anti-cancer effect
, Article Cancer Nanotechnology ; Volume 12, Issue 1 , 2021 ; 18686958 (ISSN) ; Akbarzadeh, I ; Marzbankia, E ; Farid, M ; khaledi, L ; Reihani, A. H ; Javidfar, M ; Mortazavi, P ; Sharif University of Technology
BioMed Central Ltd
2021
Abstract
Background: Melittin, a peptide component of honey bee venom, is an appealing candidate for cancer therapy. In the current study, melittin, melittin-loaded niosome, and empty niosome had been optimized and the anticancer effect assessed in vitro on 4T1 and SKBR3 breast cell lines and in vivo on BALB/C inbred mice. "Thin-layer hydration method" was used for preparing the niosomes; different niosomal formulations of melittin were prepared and characterized in terms of morphology, size, polydispersity index, encapsulation efficiency, release kinetics, and stability. A niosome was formulated and loaded with melittin as a promising drug carrier system for chemotherapy of the breast cancer cells....
Dna-Rna hybrid (R-loop): From a unified picture of the mammalian telomere to the genome-wide profile
, Article Cells ; Volume 10, Issue 6 , 2021 ; 20734409 (ISSN) ; Sharifi Zarchi, A ; Kianmehr, L ; Sharif University of Technology
MDPI
2021
Abstract
Local three-stranded DNA/RNA hybrid regions of genomes (R-loops) have been detected either by binding of a monoclonal antibody (DRIP assay) or by enzymatic recognition by RNaseH. Such a structure has been postulated for mouse and human telomeres, clearly suggested by the identification of the complementary RNA Telomeric repeat-containing RNA “TERRA”. However, the tremendous disparity in the information obtained with antibody-based technology drove us to investigate a new strategy. Based on the observation that DNA/RNA hybrids in a triplex complex genome co-purify with the double-stranded chromosomal DNA fraction, we developed a direct preparative approach from total protein-free cellular...