Loading...
Search for: anodes
0.009 seconds
Total 164 records

    Experimental Studies for Construction of a Microbial Fuel Cell (MFC) in Continuous Flow Mode

    , M.Sc. Thesis Sharif University of Technology Sadeghi Haskoo, Mohammad Amin (Author) ; Vossoughi, Manoochehr (Supervisor) ; Aalemzadeh, Iran (Supervisor)
    Abstract
    In this research performance of microbial fuel cells (MFCs) in continuous flow mode was studied. Different anodic chambers were tested and it was found that granular activated carbons (GACs) produced the highest power density (1228 mW/m3) in comparison with multiple anodes (731 mW/m3), single anode (294 mW/m3) and polymeric packings (40 mW/m3). It was also shown that in a plug-anodic chamber (PAC) the power output is reduced by reducing agitation of anodic volume. Adding more GACs to anodic chamber results in power increase, however by increasing occupied volume from 80% to 100% the power increase was negligible in result of cathodic reactions limitations. Feed flowrate was increased from... 

    The Impedimetric Human Papiloma Virous DNA Biosensor Fabrication Based on Gold Nanotubes

    , Ph.D. Dissertation Sharif University of Technology Shariati, Mohsen (Author) ; Ghorbani, Mohammad (Supervisor) ; Sasanpour, Pezhman (Supervisor)
    Abstract
    An impedimetric human papilloma virus (HPV) DNA biosensor based on gold nanotubes (AuNTs) in label free detection was materialized. The AuNTs decorated nanoporous polycarbonate (AuNTs-PC) template as biosensor electrode was fabricated by electrodeposition method. The single strand DNA (ss-DNA) probe was covalently immobilized onto the AuNTs-PC electrode. The hybridization of target sequences with the ss-DNA probe was observed by the electrochemical impedance spectroscopy (EIS). The biosensor showed high selectivity and could differentiate between the complementary, mismatch and non-complementary DNA sequences. The EIS measurements were matched to Randle's equivalent circuit. The... 

    Surface Modification of Metallic Implants and Improvement of their Biological Properties in Presence of Bioactive Ceramic Nanoparticles

    , M.Sc. Thesis Sharif University of Technology Riahi, Zohreh (Author) ; Sadrnezhad, Khatiboleslam (Supervisor)
    Abstract
    By consideration of increasing demands to use implants and efforts to get technical knowledge and localization of this implants, considerable research in this field is needed. Therefore, presentation of a coating which is able to provide parameters needed for an acceptable implant is the aim of this study. In this direction, modification of surface of metallic implants in order to achieve nanotubes of titanium oxide, with the purpose of providing biocompatibility was done. On the other hand, because chronic infection of the implant’s surrounding is one of the main important reasons in rejection of implants, 〖TiO〗_2 nanotubes as a drug carrier were used in order to solve this problem. So,... 

    Fabrication of Dental Implant from Ti-6Al-4V With Nanostructured Hydroxyapatite Coating

    , M.Sc. Thesis Sharif University of Technology Rahnamaee, Yahya (Author) ; Sadrnezhad, Khatiboleslam (Supervisor)
    Abstract
    The use of dental implants has grown considerably in recent years in Iran but this piece is the industrial imported parts that are not yet produced in Iran. So the main purpose of this research was to fabricate a dental implant from Ti-6Al-4V alloy by CNC machining techniques. On the other hand, the poor bonding strength of bioactive coatings and low cell growth on the surface of uncoated implants are the common problems in the use of dental implants. So another aim of this study was to investigate the effect of Nanoscale surface topography and nanostructured coatings on the surface modification of titanium implant in order to improve Osseointegration and the bonding strength of bioactive... 

    hysical and Chemical Surface Modification of Titanium by Nanostructured Materials, and Biological Characterization for Use in Bone Tissue Implants

    , Ph.D. Dissertation Sharif University of Technology Rahnamaee, Yahya (Author) ; Bagheri, Reza (Supervisor) ; Vossoughi, Manochehr (Supervisor) ; Samadi Kuchaksaraei, Ali (Supervisor)
    Abstract
    According to human needs and in line with the development of advanced technologies, different biomedical Engineering fields like hard tissue implants are growing rapidly. Despite significant biotechnology Developments in recent years, some problems to the recognition of implants related osseointegration phenomena persist. The deficient osseointegration and implant-associated infections are key issues for the long-term clinical success of titanium and titanium alloy implants, while development of multifunctional surfaces that can simultaneously overcome these problems remains highly challenging. Therefore, the ultimate goal of this paper was to improve bone cell attachment and simultaneously... 

    Experimental Study of Hydrogen Production from Dairy Wastewater in the Annular Microbial Electrolysis Cell (AMEC)with Spiral Anode

    , M.Sc. Thesis Sharif University of Technology Hassany, Masoud (Author) ; Yaghmaei, Soheila (Supervisor)
    Abstract
    In this project, energy in form of electricity and hydrogen was produced in microbial fuel cell and microbial electrolysis cell respectively. For reducing costs, a stainless steel mesh with graphite coating was used as anode electode. Also for increasing efficiency, anode was positioned in cells in a spiral mode. Efficiency of cells was investigated in batch and continuous mode. In this research, dairy wastewater was used as substrate.This wastewater not only has severe emissions, but also is high energy content. In the field of dairy wastewater treatment and hydrogen production in an microbial electrolysis cell wasn’t observed any article.At the first, wastewater was treated in two... 

    Fabrication of Vertically Oriented TiO2 Nanotube Arrays Using Organic Electrolytes

    , M.Sc. Thesis Sharif University of Technology Hamedi, Mojtaba (Author) ; Askari, Masoud (Supervisor) ; Hakim, Manochehr (Supervisor)
    Abstract
    Titanium dioxide, due to its specific semiconductive properties, has been a highly investigated material for a variety of applications including gas sensors, hydrogen generation by water photoelectrolysis, photocatalysis, dye-sensitized solar cells and purification of water and air. Several recent studies have indicated that titania nanotubes have improved properties compared to any other form of titania for mentioned application. Titania nanotubes have been produced by a variety of methods including deposition into a template and hydrothermal processes. Anodic oxidation of titanium foil in a fluoride-based solution is one of the best methods to produce of titania nanotube arrays. Highly... 

    Synthesis of Graphene and its Application for Adsorption of Cobalt and Strontium Ions, and as an Electrode in Electrochemical Cells (Battery)

    , M.Sc. Thesis Sharif University of Technology Jalilzadeh, Hassan (Author) ; Outokesh, Mohammad (Supervisor) ; Hosseinpour, Morteza (Co-Supervisor)
    Abstract
    Although much progress has been made in eliminating, conserving, and reducing migration and emissions of radioactive materials, the risk of radioactive material release into the environment is still one of the most important hazards in the use of nuclear energy. In this study, graphene compounds have been used as adsorbents for the removal of radioactive materials due to their high level, cost-effectiveness and simplicity of the synthesis process of various composites. In this regard, the removal of strontium and cobalt by graphene compounds has been investigated. Magnetite nanoparticles were anchored on the surface of graphene by sol-gel method and adsorption in batch mode was investigated.... 

    Lithium Extraction with TiO2 Nanotube Synthesized by Anodizing Method

    , M.Sc. Thesis Sharif University of Technology Taghvaei, Nastaran (Author) ; Askari, Masoud (Supervisor)
    Abstract
    Due to the technology advancement and the large-scale application of lithium-ion batteries in recent years, the market demand for lithium is growing rapidly and the availability of land lithium resources is decreasing significantly. As such, the focus of lithium extraction technologies has shifted to water lithium resources involving salt-lake brines and sea water. The ion exchange process is a promising method for lithium extraction from brine and seawater having low concentrations of this element. Among various aqueous recovery technologies, the lithium ion-sieve (LIS) technology is considered the most promising one. This is because LISs are excellent adsorbents with high lithium uptake... 

    Effect of Solidification Rate of Copper Anodes on the Chemical and Electrochemical Dissolution during Electrorefining

    , M.Sc. Thesis Sharif University of Technology bagheri, Reza (Author) ; Yoozbashizadeh, Hossein (Supervisor)
    Abstract
    In the present work,the effect of solidification rate on the electrochemical behavior of copperanodes of Sarcheshmeh copper complex has been studied.Inthis regard, three cylindrical coppers pecimens with different solidificationrates casted into water-cooled metal mold (A specimen), metal mold (B specimen) and sand mold (C specimen). Cylinders for microstructural and electrochemical investigation, alongthickness dividedinto several specimens. To investigate themicrostructure of the specimens, opticalmicroscopyand scanning electron microscopy(SEM)were used. ICP testhasbeen usedforelemental analysis of each specimen; and eventuallytoinvestigate theelectrochemical behavior ofeach of... 

    Modeling and Simulation of Semi Fuel Cells

    , M.Sc. Thesis Sharif University of Technology Amiri, Morteza (Author) ; Pishvaei, Mahmoud Reza (Supervisor)
    Abstract
    The usages of Autonomous Underwater Vehicles (AUV) are limited due to the lack of suitable portable energy sources. Researches show that chargeable batteries and fuel cells are the most appropriate energy source for AUVs in near future. The main purpose of thesis is the modeling and obtaining the governing equations for Aluminum/Air batteries containing seawater, the so-called semi fuel cell. The steady state governing equations include Navier-Stocks equations (Hydraulic-Boundary layer), chemical ionic species mass balance at boundary layer velocity field, electrochemical equations in the electrolyte and the electrode surface, equations of motion of the hydrogen bubbles and equations for the... 

    Influence of Cobalt and Vanadium Dopants on the Performance of TiO2(B) Nanowires used as anode Materials in Lithium-ion Batteries

    , M.Sc. Thesis Sharif University of Technology Amirsalehi, Mahmoud (Author) ; Askari, Masoud (Supervisor)
    Abstract
    Li-ion batteries have been widely applied as power sources for portable electronic devices. Recently, Li-ion batteries are considered as the most promising energy storage technology for electric vehicle applications however, fundamental improvements are needed. TiO2 (B) is attractive candidate for anodes in rechargeable Li-ion batteries, due to their low cost, non-toxicity and favorable channel structure for fast lithium mobility. It is predicted that synthesis of doped nanostructure of this material, through reducing the diffusion pathway and formation of crystal defects, will increase the capacity of TiO2(B). In this investigation, Co and V doped TiO2(B) nanowires are synthesized by... 

    Design and Manufacture of Nanostructured Hydroxyapatite coated Foamy core@compact Shell Ti-6Al-4V Nanocomposite

    , M.Sc. Thesis Sharif University of Technology Ahmadi Seyedkhani, Shahab (Author) ; Sadrnezhad, Khatiboleslam (Supervisor)
    Abstract
    The main purpose of this research is design and manufacture of nanostructured hydroxyapatite-coated foamy core@compact shell Ti-6Al-4V bone-like composites for utilization as substitutive implant for cortical bone having porous core. The production procedure consist of two steps; (a) fabrication of foamy core@compact shell Ti-6Al-4V alloy using powder metallurgy-space holder technique, (b) precipitation of hydroxyapatite on the Ti-6Al-4V alloy specimens via pulse electrodeposition process. The bone-like structures were designed to reduce the stress shielding which ensures long-term stabilization of implants. It is while that, the hydroxyapatite coating improve the biological response of... 

    Failure analysis: Sulfide stress corrosion cracking and hydrogen-induced cracking of A216-WCC wellhead flow control valve body

    , Article Journal of Failure Analysis and Prevention ; Vol. 14, issue. 3 , 2014 , p. 376-383 Ziaei, S. M. R ; Kokabi A.H ; Mostowfi J ; Sharif University of Technology
    Abstract
    The wellhead flow control valve bodies which are the focal point of this failure case study were installed in some of the upstream facilities of Khangiran's sour gas wells. These valve bodies have been operating satisfactorily for 3 years in wet H2S environment before some pits and cracks were detected in all of them during the periodical technical inspections. One failed valve body was investigated by chemical and microstructural analytical techniques to find out the failure cause and provide preventive measures. The valve body alloy was A216-WCC cast carbon steel. During investigation many cracks were observed on the inner surface of the valve body grown from the surface pits. The results... 

    Sulfide stress corrosion cracking and hydrogen induced cracking of A216-WCC wellhead flow control valve body

    , Article Case Studies in Engineering Failure Analysis ; Volume 1, Issue 3 , 2013 , Pages 223-234 ; 22132902 (ISSN) Ziaei, S. M. R ; Kokabi, A. H ; Nasr Esfehani, M ; Sharif University of Technology
    2013
    Abstract
    The wellhead flow control valve bodies which are the focal point of this failure case study were installed in some of the upstream facilities of Khangiran's sour gas wells. These valve bodies have been operating satisfactorily for 3 years in wet H2S environment before some pits and cracks were detected in all of them during the periodical technical inspections. One failed valve body was investigated by chemical and microstructural analytical techniques to find out the failure cause and provide preventive measures. The valve body alloy was A216-WCC cast carbon steel. During investigation many cracks were observed on the inner surface of the valve body grown from the surface pits. The results... 

    Facile synthesis of titanium nitride-graphene nanocomposite and its improved rate-dependent electroactivity with respect to lithium storage

    , Article Materials Research Bulletin ; Volume 84 , 2016 , Pages 388-396 ; 00255408 (ISSN) Yousefi, E ; Ghorbani, M ; Dolati, A ; Yashiro, H ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    Titanium nitride/graphene nanocomposite as an anode material of lithium ion batteries has been fabricated through the reaction of TiCl4 and NaN3 in supercritical benzene medium followed by ammonia treating at 1000 °C for 10 h. The synthesized TiN/G nanocomposite depicts rate-dependent behavior in such a way that it shows specific capacity of 115 mAh g−1 when is cycled at higher rate (1.6 C) while it shows 76 mAh g−1 when is cycled initially at lower rate (0.2 C) and is subsequently subjected to higher rate (1.6 C). Moreover, TiN/G anode demonstrates capacity retention of 112%, 100%, and 70% after 250 cycles at charge/discharge rates of 1.6, 0.7, and 0.2 C, respectively. This unusual behavior... 

    All inorganic cesium lead iodide perovskite nanowires with stabilized cubic phase at room temperature and nanowire array-based photodetectors

    , Article Nano Letters ; Volume 17, Issue 8 , 2017 , Pages 4951-4957 ; 15306984 (ISSN) Waleed, A ; Tavakoli, M. M ; Gu, L ; Hussain, S ; Zhang, D ; Poddar, S ; Wang, Z ; Zhang, R ; Fan, Z ; Sharif University of Technology
    Abstract
    Alluring optical and electronic properties have made organometallic halide perovskites attractive candidates for optoelectronics. Among all perovskite materials, inorganic CsPbX3 (X is halide) in black cubic phase has triggered enormous attention recently owing to its comparable photovoltaic performance and high stability as compared to organic and hybrid perovskites. However, cubic phase stabilization at room temperature for CsPbI3 still survives as a challenge. Herein we report all inorganic three-dimensional vertical CsPbI3 perovskite nanowires (NWs) synthesized inside anodic alumina membrane (AAM) by chemical vapor deposition (CVD) method. It was discovered that the as-grown NWs have... 

    A non-catalytic vapor growth regime for organohalide perovskite nanowires using anodic aluminum oxide templates

    , Article Nanoscale ; Volume 9, Issue 18 , 2017 , Pages 5828-5834 ; 20403364 (ISSN) Tavakoli, M. M ; Waleed, A ; Gu, L ; Zhang, D ; Tavakoli, R ; Lei, B ; Su, W ; Fang, F ; Fan, Z ; Sharif University of Technology
    Royal Society of Chemistry  2017
    Abstract
    In this work, a novel and facile synthesis process to fabricate single crystalline organometal halide perovskite nanowires has been successfully developed. Nanowires were grown in a high density ordered array from metal nanoclusters inside anodic aluminum oxide templates using a non-catalytic chemical vapor deposition method. Specifically, perovskite NWs were grown as a result of the reaction between methylammonium iodide (MAI) and the Pb/Sn (Pb or Sn) metal in anodic aluminum oxide templates under optimal conditions. The characterization results show that there is a reaction zone at the interface between the perovskite material and metal, at the bottom of the anodic aluminum oxide... 

    Organic halides and nanocone plastic structures enhance the energy conversion efficiency and self-cleaning ability of colloidal quantum dot photovoltaic devices

    , Article Journal of Physical Chemistry C ; Volume 121, Issue 18 , 2017 , Pages 9757-9765 ; 19327447 (ISSN) Tavakoli, M. M ; Simchi, A ; Tavakoli, R ; Fan, Z ; Sharif University of Technology
    American Chemical Society  2017
    Abstract
    This paper presents solid-state ligand exchange of spin-coated colloidal lead sulfide quantum dot (PbS QD) films by methylammonium iodide (MAI) and integration of them in depleted heterojunction solar (DHS) devices having an antireflecting (AR) nanocone plastic structure. Time-resolved photoluminescence measurements determine a shorter lifetime of the charge carries on a semiconductor (TiO2) electron transfer layer for the MAI-passivated QD films as compared with those with long-chain aliphatic or short thiol ligands. Consequently, the DHS device yields improved power conversion efficiency (>125%) relative to oleic-acid-passivated PbS QD films. Using anodized aluminum oxide templates, an... 

    Synthesis of anodized TIO2 nanotube arrays as ion sieve for lithium extraction

    , Article ChemistrySelect ; Volume 5, Issue 33 , 2020 , Pages 10339-10345 Taghvaei, N ; Taghvaei, E ; Askari, M ; Sharif University of Technology
    Wiley-Blackwell  2020
    Abstract
    Titanium type lithium ion-sieve nanotubes synthesized by the hydrothermal method were extensively explored over recent years due to its promising properties. However, on account of nanotubes′ tangled structure impeding the lithium adsorption in the interior nanotube walls, unalterable dimensions of the synthesized nanotubes, and a long period of annealing, the anodizing technique was proposed. It is shown that lithium uptake and adsorption capacity is improved because of easier mass transfer during the ion exchange process. This work focuses on a novel anodizing method for nanotube ion-sieve synthesis. The optimum anodizing condition was discovered by altering anodizing voltage, time, and...