Loading...
Search for: anodes
0.015 seconds
Total 164 records

    Carbon-Pt nanoparticles modified TiO 2 nanotubes for simultaneous detection of dopamine and uric acid

    , Article Journal of Nanoscience and Nanotechnology ; Volume 11, Issue 8 , 2011 , Pages 6668-6675 ; 15334880 (ISSN) Mahshid, S ; Luo, S ; Yang, L ; Mahshid, S. S ; Askari, M ; Dolati, A ; Cai, Q ; Sharif University of Technology
    Abstract
    The present work describes sensing application of modified TiO 2 nanotubes having carbon-Pt nanoparticles for simultaneous detection of dopamine and uric acid. The TiO 2 nanotubes electrode was prepared using anodizing method, followed by electrodeposition of Pt nanoparticles onto the tubes. Carbon was deposited by decomposition of polyethylene glycol in a tube furnace to improve the conductivity. The C-Pt-TiO 2 nanotubes modified electrode was characterized by cyclic voltam-metry and differential pulse voltammetry methods. The modified electrode displayed high sensitivity towards the oxidation of dopamine and uric acid in a phosphate buffer solution (pH 7.00). The electro-oxidation currents... 

    Self-organized titanium oxide nanotubes prepared in phosphate electrolytes: Effect of voltage and fluorine concentration

    , Article ECS Transactions, 25 April 2010 through 30 April 2010 ; Volume 28, Issue 7 , April , 2010 , Pages 67-74 ; 19385862 (ISSN) ; 9781607681830 (ISBN) Mahshid, S ; Dolati, A ; Goodarzi, M ; Askari, M ; Ghahramaninezhad, A ; ECS All Divisions ; Sharif University of Technology
    2010
    Abstract
    TiO2 a nanotube array was prepared using an anodization process. The process proceeded in a two-electrode cell containing of platinum sheet as the cathode electrode. Two phosphate-base electrolyte solutions containing different amounts of HF and NH4F were prepared. Different concentration of fluorine ions were examined in respected electrolytes. Current transient techniques were used to produce the TiO2 nanotubes at constant voltage of 18-25V. It was revealed that anodization at 18-22V, in so-called electrolytes would end up to nano-tubular structure. However the tubular structure prepared at 20V and from phosphate electrolyte containing of 0.5 wt% NH4F as well as 0.5 wt% HF, was recognized... 

    Anodic pulse electrodeposition of mesoporous manganese dioxide nanostructures for high performance supercapacitors

    , Article Journal of Alloys and Compounds ; Volume 887 , 2021 ; 09258388 (ISSN) Mahdi, F ; Javanbakht, M ; Shahrokhian, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    A pseudocapacitive electrode based on mesoporous manganese dioxide (MnO2) was fabricated via the anodic pulse electrodeposition method. Pulse current (PC) has many parameters that affect the physicochemical and electrochemical properties of the material. PC parameters are generally divided into independent and dependent types. Independent pulse parameters consist of the time of applying current (ton), interval time with zero current (toff), and peak current density (Ip). Dependent pulse parameters include duty cycle (θ), frequency (f), and average current density (Ia). In this work, the changes of two independent parameters (ton and toff) at the constant Ip = 2 mA cm-2 on the anodic pulse... 

    How does cobalt phosphate modify the structure of TiO2 nanotube array photoanodes for solar water splitting?

    , Article Catalysis Today ; Volume 335 , 2019 , Pages 306-311 ; 09205861 (ISSN) Maghsoumi, A ; Naseri, N ; Calloni, A ; Bussetti, G ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    TiO2 nanotube arrays (TNA) have been modified by cobalt phosphate (CoPi) through potentiostatic electrodeposition method. Different samples have been prepared by changing the loaded CoPi through the deposition time from 10 to 960 min. Formed catalytic materials have been characterized by different methods. Although charge transfer resistance of the CoPi/TNA photoanodes have been decreased from 5.5 to 4.0 kΩ by increasing the deposition time from 5 to 60 min, the maximum photoresponse was obtained for 10 min CoPi deposition leading to 24% more photocurrent compare to bare TNA which proposed optimum value for cobalt phosphate decoration. Based on field emission scanning electron microscopy... 

    Flooding and dehydration diagnosis in a polymer electrolyte membrane fuel cell stack using an experimental adaptive neuro-fuzzy inference system

    , Article International Journal of Hydrogen Energy ; Volume 47, Issue 81 , 2022 , Pages 34628-34639 ; 03603199 (ISSN) Khanafari, A ; Alasty, A ; Kermani, M. J ; Asghari, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Today the need for fault diagnosis in polymer electrolyte membrane fuel cells (PEMFCs) is felt more than ever to increase the useful life and durability of the cell. The present study proposes an indirect in-situ experimental-based algorithm for diagnosing the moisture content issues in a three-cell stack. Three adaptive neuro-fuzzy inference systems (ANFIS) approximate the system outputs (cells voltages, cathodic and anodic pressure drop) in normal conditions. The values of Pearson's correlation coefficients (0.998, 0.983, and 0.995 for outputs, respectively) show the high quality of the modeling. In unknown operating conditions, the residuals of experimental and ANFIS values are compared... 

    Pure commercial titanium color anodizing and corrosion resistance

    , Article Journal of Materials Engineering and Performance ; Volume 20, Issue 9 , 2011 , Pages 1690-1696 ; 10599495 (ISSN) Karambakhsh, A ; Afshar, A ; Ghahramani, S ; Malekinejad, P ; Sharif University of Technology
    Abstract
    In order to improve titanium corrosion behavior, we can increase the thickness of oxide layer on titanium surface during anodizing process and by electrochemistry. In this research, self-color anodizing of Ti in sulfuric acid was done, and anodizing layers were created in different colors. The highest value of chromaticity was 37.8 for the anodized sample in 10 V, and the lowest value was 8.6 at 15 V. The oxide layer thickness was calculated by optical method (light refraction). The anodic film thickness increased by increasing the anodizing voltage. The highest thickness of anodic film was 190 nm in sulfuric acid solution for the anodized sample in 80 V. Corrosion resistance of anodized Ti... 

    Comparison of the corrosion resistance of alkaline- and acid-anodized titanium

    , Article Materials Performance ; Volume 54, Issue 1 , 2015 , Pages 51-55 ; 00941492 (ISSN) Karambakhsh, A ; Ghahramani, S ; Afshar, A ; Malekinejad, P ; Sharif University of Technology
    National Assoc. of Corrosion Engineers International  2015
    Abstract
    The process of self-color anodizing of titanium is done in acidic and alkaline solutions, and anodic films of different colors are formed. Results of this work show that the corrosion rate of titanium decreased after the application of an anodizing layer  

    Research on the effect of transients of high-voltage power supplies on the lifetime of high-power vacuum tubes: A microscopic assessment

    , Article IEEE Transactions on Plasma Science ; Volume 50, Issue 11 , 2022 , Pages 4700-4708 ; 00933813 (ISSN) Kaboli, S ; Ziaoddini, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    Electron guns are used as the electron sources in high-power electron tubes. The generated electron beam in electric guns passes through an aperture at the center of the anode. Since the electron beam has considerable kinetic energy, any collision between the electron beam and the anode aperture edge damages the electron gun. Therefore, electron guns are designed to meet the compatibility between the diameters of the electron beam and the anode aperture. However, this compatibility is disrupted during the transient time interval of the gun's power supply. In this article, the cause of failure of the electron gun of high-power electron tubes is investigated for the transient interval of the... 

    Enhanced dye loading-light harvesting TiO2 photoanode with screen printed nanorod-nanoparticles assembly for highly efficient solar cell

    , Article Electrochimica Acta ; Volume 169 , 2015 , Pages 395-401 ; 00134686 (ISSN) Jalali, M ; Siavash Moakhar, R ; Kushwaha, A ; Goh, G. K. L ; Riahi-Noori, N ; Sadrnezhaad, S. K ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Morphology tailored TiO2 nano assemblies consisting of nanorods with and without nanoparticle attachments were hydrothermally synthesized and their characteristics and light scattering properties were determined by x-ray diffraction (XRD), nitrogen sorption analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), electrochemical impedance spectroscopy (EIS) and ultraviolet-visible spectroscopy (UV-Vis). The nanorod-nanoparticles (NR-NP) assemblies and smooth nanorod (NR) double layers were screen printed onto fluorine doped tin oxide coated glass underlayers to fabricate dye-sensitized solar cell (DSSC) photoanodes. The double layer heterogeneous... 

    Copper oxide@cobalt oxide core-shell nanostructure, as an efficient binder-free anode for lithium-ion batteries

    , Article Journal of Physics D: Applied Physics ; Volume 54, Issue 46 , 2021 ; 00223727 (ISSN) Jafaripour, H ; Dehghan, P ; Zare, A. M ; Sanaee, Z ; Ghasemi, S ; Sharif University of Technology
    IOP Publishing Ltd  2021
    Abstract
    Here, cobalt oxide nanostructures synthesized on vertically aligned copper oxide nanowires (NWs) have been investigated as a possible anode material for Lithium-ion batteries (LIBs). Copper oxide NWs were formed by thermal oxidation of electrochemically deposited copper on the stainless steel mesh substrate. The process used allows the formation of highly dense copper oxide NWs with excellent adhesion to the conductive current collector substrate. A simple hydrothermal method was implemented for the deposition of cobalt oxide nanostructures on the copper oxide NWs. The as-prepared binder-free copper oxide@cobalt oxide NWs electrode exhibits a high initial specific capacity of 460 mAh g-1 at... 

    Electrochemical oxidation of saccharose on copper (hydr)oxide-modified electrode in alkaline media

    , Article Cuihua Xuebao/Chinese Journal of Catalysis ; Volume 31, Issue 11 , 2010 , Pages 1351-1357 ; 02539837 (ISSN) Jafarian, M ; Rashvand Avei, M ; Danaee, I ; Gobal, F ; Mahjani, M. G ; Sharif University of Technology
    2010
    Abstract
    A stable copper (hydr)oxide-modified electrode was prepared in 0.5 mol/L NaOH solution by cyclic voltammetry in the range of -250 to 1000 mV. It can be used for electrochemical studies in the range of -250 to 1000 mV without interfering peaks because there is no oxidation of copper. During an anodic potential sweep, the electro-oxidation of saccharose on Cu occurred by the formation of CuIII and this reaction also occurred in the early stages of the reversed cycle until it is stopped by the negative potentials. A mechanism based on the electro-chemical generation of CuIII active sites and their subsequent consumption by saccharose was proposed, and the rate law and kinetic parameters were... 

    Electrocatalytic oxidation of glucose on Ni and NiCu alloy modified glassy carbon electrode

    , Article Journal of Solid State Electrochemistry ; Volume 13, Issue 8 , 2009 , Pages 1171-1179 ; 14328488 (ISSN) Jafarian, M ; Forouzandeh, F ; Danaee, I ; Gobal, F ; Mahjani, M. G ; Sharif University of Technology
    2009
    Abstract
    Nickel and nickel-copper alloy modified glassy carbon electrodes (GC/Ni and GC/NiCu) prepared by galvanostatic deposition were examined for their redox processes and electro-catalytic activities towards the oxidation of glucose in alkaline solutions. The methods of cyclic voltammetry (CV) and chronoamperometry (CA) were employed. The cyclic voltammogram of NiCu alloy demonstrates the formation of β/β crystallographic forms of the nickel oxyhydroxide under prolonged repetitive potential cycling in alkaline solution. It is also observed that the overpotential for O 2 evolution increases for NiCu alloy modified electrode. In CV studies, NiCu alloy modified electrode yields significantly higher... 

    Fabrication of CuFe2O4/α-Fe2O3 composite thin films on FTO coated glass and 3-D nanospike structures for efficient photoelectrochemical water splitting

    , Article ACS Applied Materials and Interfaces ; Volume 8, Issue 51 , 2016 , Pages 35315-35322 ; 19448244 (ISSN) Hussain, S ; Hussain, S ; Waleed, A ; Tavakoli, M. M ; Wang, Z ; Yang, S ; Fan, Z ; Nadeem, M. A ; Sharif University of Technology
    American chemical society  2016
    Abstract
    Recently, photoelectrochemical conversion (PEC) of water into fuel is attracting great attention of researchers due to its outstanding benefits. Herein, a systematic study on PEC of water using CuFe2O4/ α-Fe2O3 composite thin films is presented. CuFe2O4/ α-Fe2O3 composite thin films were deposited on two different substrates; (1) planner FTO glass and (2) 3-dimensional nanospike (NSP). The films on both substrates were characterized and tested as anode material for photoelectrochemical water splitting reaction. During PEC studies, it was observed that the ratio between two components of composite is crucial and highest PEC activity results were achieved by 1:1 component ratio (CF-1) of... 

    Nanotextured spikes of α-Fe2O3/NiFe2O4 composite for efficient photoelectrochemical oxidation of water

    , Article Langmuir ; Volume 34, Issue 12 , 2018 , Pages 3555-3564 ; 07437463 (ISSN) Hussain, S ; Tavakoli, M. M ; Waleed, A ; Virk, U. S ; Yang, S ; Waseem, A ; Fan, Z ; Nadeem, M. A ; Sharif University of Technology
    American Chemical Society  2018
    Abstract
    We demonstrate for the first time the application of p-NiFe2O4/n-Fe2O3 composite thin films as anode materials for light-assisted electrolysis of water. The p-NiFe2O4/n-Fe2O3 composite thin films were deposited on planar fluorinated tin oxide (FTO)-coated glass as well as on 3D array of nanospike (NSP) substrates. The effect of substrate (planar FTO and 3D-NSP) and percentage change of each component (i.e., NiFe2O4 and Fe2O3) of composite was studied on photoelectrochemical (PEC) water oxidation reaction. This work also includes the performance comparison of p-NiFe2O4/n-Fe2O3 composite (planar and NSP) devices with pure hematite for PEC water oxidation. Overall, the nanostructured... 

    Deposition of metallic molybdenum thin films on 304L steel substrate by SUT-PF

    , Article Surface and Coatings Technology ; 2016 ; 02578972 (ISSN) Hosseinzadeh, A ; Nazmabadi, M ; Vosoughi, N ; Sharif University of Technology
    Elsevier B. V 
    Abstract
    The present research work aims to employ plasma focus in order to deposit molybdenum (Mo) on the 304 stainless steel substrate. The processing parameters were shot numbers as well as the distance of substrate from the anode tip. Stereo, atom force microscopy (AFM) and field emission-scanning electron microscopy (FE-SEM) equipped with energy dispersive X-ray spectroscopy (EDS) were used to study the deposited coatings. Microhardness measurements were also performed on the coatings. Results indicated that the plasma focus can be successfully applied to deposit Mo anode on the stainless steel substrate. The coatings contained discrete pores with sizes varying by processing parameters. The... 

    Direct growth of nickel-cobalt oxide nanosheet arrays on carbon nanotubes integrated with binder-free hydrothermal carbons for fabrication of high performance asymmetric supercapacitors

    , Article Composites Part B: Engineering ; Volume 172 , 2019 , Pages 41-53 ; 13598368 (ISSN) Hekmat, F ; Shahrokhian, S ; Hosseini, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    A high performance asymmetric supercapacitor (ASC)has been fabricated by using nickel oxide-cobalt oxide nanosheets (NiO–CoO NSs), which were directly grown on carbon nanotubes (CNTs)and hydrothermal carbon spheres (HTCs)as positive and negative electrodes, respectively. Both electrode materials are binder-free prepared by using a catalytic chemical vapour deposition (CVD)approach followed by a facile hydrothermal method for cathode and a one-step environmental-friendly route called hydrothermal carbonization for anode. Using NiO–CoO NSs@CNTs and HTCs, which were directly grown on Ni foam, not only leads to a very small equivalent series resistance, but also provides an impressive capacitive... 

    Fast and ultra-sensitive voltammetric detection of lead ions by two-dimensional graphitic carbon nitride (g-C3N4) nanolayers as glassy carbon electrode modifier

    , Article Measurement: Journal of the International Measurement Confederation ; Volume 134 , 2019 , Pages 679-687 ; 02632241 (ISSN) Hatamie, A ; Jalilian, P ; Rezvani, E ; Kakavand, A ; Simchi, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Recently, graphitic carbon nitride (g-C3N4) has attracted great interest for photo(electro)chemical applications such as sensing, solar energy exploitation, photocatalysis, and hydrogen generation. This paper presents the potential application and benefits of g-C3N4 nanolayers as a green and highly efficient electrode modifier for the detection of trace lead ions in drinking water and urban dust samples. Carbon nitride nanosheets with a thickness of ∼6 A° and lateral of 100–150 nm were prepared through high-temperature polymerization of melamine followed by sonication-assisted liquid exfoliation. A glassy carbon electrode (GCE) was modified by a thin layer of g-C3N4 through drop casting and... 

    Electrocatalytic oxidation of ethanol on flexible three-dimensional interconnected nickel/gold composite foams in alkaline media

    , Article Electroanalysis ; Volume 31, Issue 3 , 2019 , Pages 504-511 ; 10400397 (ISSN) Hatamie, A ; Rezvani, E ; Sedighian Rasouli, A ; Simchi, A. R ; Sharif University of Technology
    Wiley-VCH Verlag  2019
    Abstract
    In this work, a porous and flexible three-dimensional (3D) nickel/gold nanoparticle electrode (NiF/AuNPs) is presented as an efficient electrocatalyst for ethanol oxidation in alkaline media. The 3D nanocomposite electrode consists of interconnected porous nickel foam (NiF) with large pores (500±200 μm diameter) surrounded by interconnected struts (∼100 μm) that are decorated with gold nanoparticles (AuNPs, 37±8 nm) through in-situ electrochemical deposition. The catalytic performance of the 3D electrode was evaluated by different electrochemical methods. An enhancement in the performance (about 253 %) and a remarkable decline in onset potential (about ∼0.63 V) in comparison with pristine... 

    Effect of a synthesized pulsed electrodeposited Tin/pbo2-ruo2nanocomposite on zinc electrowinning

    , Article Industrial and Engineering Chemistry Research ; Volume 60, Issue 31 , 2021 , Pages 11737-11748 ; 08885885 (ISSN) Hakimi, F ; Rashchi, F ; Ghalekhani, M ; Dolati, A ; Razi Astaraei, F ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Nowadays, there is a growing interest in synthesizing electrodes used in zinc electrowinning, increasing active surface area, decreasing specific energy consumption, and the oxygen evolution reaction (OER) overpotential. In this study, modified nanocomposite anodes were synthesized by applying pulsed and constant direct current electrodeposition to improve the catalytic activity of the electrodes toward the oxygen evolution reaction (OER) and reduce energy consumption in zinc electrowinning. By decreasing particle size, the active surface area of PbO2-RuO2 nano-mixed composite electrode was 2.88 and 14.22 times greater than PbO2-RuO2 microcomposite and pure PbO2 electrodes, respectively.... 

    Plasma-enhanced chemical vapor deposition for fabrication of yolk-shell SnO2@Void@C nanowires, as an efficient carbon coating technique for improving lithium-ion battery performance

    , Article Materials Science in Semiconductor Processing ; Volume 149 , 2022 ; 13698001 (ISSN) Habibi, A ; Mousavi, M. R ; Yasoubi, M ; Sanaee, Z ; Ghasemi, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This manuscript describes the implementation of plasma-enhanced chemical vapor deposition (DC-PECVD) and vapor-liquid-solid (VLS) techniques to fabricate a yolk-shell SnO2@Void@C nanowire (NW) structure. SnO2 nanowires have been synthesized on the stainless steel mesh substrate through the VLS method. The PECVD-assisted growth of carbon nanolayer on the SnO2 and SiO2 coated SnO2 NWs has been performed to fabricate SnO2@C core-shell and SnO2@SiO2@C yolk-shell structures, respectively. A consequent silica etching process converted the SnO2@SiO2@C into SnO2@Void@C structure. The electrochemical performance of bare SnO2 NWs, SnO2 NWs @ C, and SnO2 @Void @ C coaxial NWs structures have been...