Loading...
Search for: anodes
0.01 seconds
Total 164 records

    Facile synthesis of petal-like NiCo/NiO-CoO/nanoporous carbon composite based on mixed-metallic MOFs and their application for electrocatalytic oxidation of methanol

    , Article Applied Catalysis B: Environmental ; Volume 244 , 2019 , Pages 802-813 ; 09263373 (ISSN) Rezaee, S ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Porous carbon template decorated with mixed transition metals/metal oxides with tunable architecture is becoming increasingly important and attractive as a kind of novel electrode materials. In this way, mixed-metallic metal-organic frameworks (MOFs) provide an opportunity for fabrication of homogeneous mixed metals/metal oxides distribution in the porous carbon frame without any carbon precursor additive. Also, structures, dimensions and electrochemical performance of MOFs can be readily manipulated by simply tuning the metals molar ratio. In this study, we demonstrate the design and fabrication of petal-like NiCo/NiO-CoO metal/metal oxides with a rational composition embedded in 3D... 

    In vitro bioactivity and corrosion resistance enhancement of Ti-6Al-4V by highly ordered TiO 2 nanotube arrays

    , Article Journal of the Australian Ceramic Society ; Volume 55, Issue 1 , 2019 , Pages 187-200 ; 25101560 (ISSN) Sarraf, M ; Sukiman, N. L ; Bushroa, A. R ; Nasiri Tabrizi, B ; Dabbagh, A ; Abu Kasim, N. H ; Basirun, W. J ; Sharif University of Technology
    Springer International Publishing  2019
    Abstract
    In the present study, the structural features, corrosion behavior, and in vitro bioactivity of TiO 2 nanotubular arrays coated on Ti–6Al–4V (Ti64) alloy were investigated. For this reason, Ti64 plates were anodized in an ammonium fluoride electrolyte dissolved in a 90:10 ethylene glycol and water solvent mixture at room temperature under a constant potential of 60 V for 1 h. Subsequently, the anodized specimens were annealed in an argon gas furnace at 500 and 700 °C for 1.5 h with a heating and cooling rate of 5 °C min −1 . From XRD analysis and Raman spectroscopy, a highly crystalline anatase phase with tetragonal symmetry was formed from the thermally induced crystallization at 500 °C.... 

    Fast and ultra-sensitive voltammetric detection of lead ions by two-dimensional graphitic carbon nitride (g-C3N4) nanolayers as glassy carbon electrode modifier

    , Article Measurement: Journal of the International Measurement Confederation ; Volume 134 , 2019 , Pages 679-687 ; 02632241 (ISSN) Hatamie, A ; Jalilian, P ; Rezvani, E ; Kakavand, A ; Simchi, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Recently, graphitic carbon nitride (g-C3N4) has attracted great interest for photo(electro)chemical applications such as sensing, solar energy exploitation, photocatalysis, and hydrogen generation. This paper presents the potential application and benefits of g-C3N4 nanolayers as a green and highly efficient electrode modifier for the detection of trace lead ions in drinking water and urban dust samples. Carbon nitride nanosheets with a thickness of ∼6 A° and lateral of 100–150 nm were prepared through high-temperature polymerization of melamine followed by sonication-assisted liquid exfoliation. A glassy carbon electrode (GCE) was modified by a thin layer of g-C3N4 through drop casting and... 

    Electrophoretic encapsulation for slow release of vancomycin from perpendicular TiO2 nanotubes grown on Ti6Al4V electrodes

    , Article Materials Research Express ; Volume 6, Issue 12 , 2019 ; 20531591 (ISSN) ; https://iopscience.iop.org/article/10.1088/2053-1591/ab6c98 Riahi, Z ; Ahmadi Seyedkhani, S ; Sadrnezhaad, S. K ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    Ordered perpendicular TiO2 nanotubes (TNT) with 405 to 952 nm length and 60 to 90 nm diameter were grown via 40 to 120 min anodization of Ti6Al4V flat substrates. The samples were called TNT-40, -60, -80, -100, and -120. Vancomycin was loaded on the bare and anodized electrodes by separate immersion and electrophoretic (EP) deposition procedures. EP loading resulted in storage capacity of 5221.86 μg cm-2 for TNT-80 which was much higher than 1036.75 μg cm-2 of immersed sample. Drug release comprised of three stages: (i) burst release (78% for the bare, and 23% for the TNT-80 sample), (ii) gradual transport (21% for the bare, and 64% for the TNT-80 sample), and (iii) equilibrium. Transfer... 

    Electrophoretic encapsulation for slow release of vancomycin from perpendicular TiO2 nanotubes grown on Ti6Al4V electrodes

    , Article Materials Research Express ; Volume 6, Issue 12 , 2019 ; 20531591 (ISSN) Riahi, Z ; Ahmadi Seyedkhani, S ; Sadrnezhaad, S. K ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    Ordered perpendicular TiO2 nanotubes (TNT) with 405 to 952 nm length and 60 to 90 nm diameter were grown via 40 to 120 min anodization of Ti6Al4V flat substrates. The samples were called TNT-40, -60, -80, -100, and -120. Vancomycin was loaded on the bare and anodized electrodes by separate immersion and electrophoretic (EP) deposition procedures. EP loading resulted in storage capacity of 5221.86 μg cm-2 for TNT-80 which was much higher than 1036.75 μg cm-2 of immersed sample. Drug release comprised of three stages: (i) burst release (78% for the bare, and 23% for the TNT-80 sample), (ii) gradual transport (21% for the bare, and 64% for the TNT-80 sample), and (iii) equilibrium. Transfer... 

    Electrocatalytic oxidation of ethanol on flexible three-dimensional interconnected nickel/gold composite foams in alkaline media

    , Article Electroanalysis ; Volume 31, Issue 3 , 2019 , Pages 504-511 ; 10400397 (ISSN) Hatamie, A ; Rezvani, E ; Sedighian Rasouli, A ; Simchi, A. R ; Sharif University of Technology
    Wiley-VCH Verlag  2019
    Abstract
    In this work, a porous and flexible three-dimensional (3D) nickel/gold nanoparticle electrode (NiF/AuNPs) is presented as an efficient electrocatalyst for ethanol oxidation in alkaline media. The 3D nanocomposite electrode consists of interconnected porous nickel foam (NiF) with large pores (500±200 μm diameter) surrounded by interconnected struts (∼100 μm) that are decorated with gold nanoparticles (AuNPs, 37±8 nm) through in-situ electrochemical deposition. The catalytic performance of the 3D electrode was evaluated by different electrochemical methods. An enhancement in the performance (about 253 %) and a remarkable decline in onset potential (about ∼0.63 V) in comparison with pristine... 

    Highly-ordered TiO2 nanotubes decorated with Ag2O nanoparticles for improved biofunctionality of Ti6Al4V

    , Article Surface and Coatings Technology ; Volume 349 , 2018 , Pages 1008-1017 ; 02578972 (ISSN) Sarraf, M ; Dabbagh, A ; Abdul Razak, B ; Mahmoodian, R ; Nasiri Tabrizi, B ; Madaah Hosseini, H. R ; Saber Samandari, S ; Abu Kasim, N. H ; Abdullah, H ; Sukiman, N. L ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    The nanotubular arrays of titanium dioxide (TiO2 NTs) have recently received considerable interest for fabrication of dental and orthopedic implants. However, their antibacterial activity requires substantial improvement for the potential infections minimization, without compromise of their biocompatibility. In this work, TiO2 NTs were developed on Ti6Al4V substrates via anodization at a constant potential of 60 V for 60 min, followed by heat treatment at 500 °C for 90 min. Physical vapor deposition (PVD) was further employed to decorate silver oxide nanoparticles (Ag2O NPs) on the nanotubular edges. The results indicated that the highly-ordered TiO2 NTs with decorated Ag2O NPs could promote... 

    Loading drug on nanostructured Ti6Al4V-HA for implant applications

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 31, Issue 8 , 2018 , Pages 1159-1165 ; 1728144X (ISSN) Abbaspour, S ; Sadrnezhaad, S. K ; Sharif University of Technology
    Materials and Energy Research Center  2018
    Abstract
    Arrayed Ti6Al4V nanotubes (TNT) coated with hydroxyapatite (HA) were synthesized via electrochemical anodization method. Paracetamol was loaded onto TNT-HA electrode. Effects of anodization, nanotube formation and hydroxyapatite deposition on sorption and release of the drug were investigated. Saturation time of paracetamol on the anodized samples was 30% shorter than the hydroxyapatite-coated samples. Release behavior of the loaded drug was studied by (a) plunging the probe into phosphate buffered saline (PBS), (b) sampling the drug-loaded PBS at different times and (c) analyzing the solution via ultraviolet-visible (UV-vis) spectroscopy. Results showed that HA electrodes hold higher... 

    Influence of vanadium, cobalt-codoping on electrochemical performance of titanium dioxide bronze nanobelts used as lithium ion battery anodes

    , Article Journal of Materials Science: Materials in Electronics ; 2018 , Pages 1-9 ; 09574522 (ISSN) Amirsalehi, M ; Askari, M ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    In this work, V, Co-codoped TiO2(B) samples are synthesized through a hydrothermal method, and used as negative electrode materials for lithium ion batteries. The amount of dopants is varied in order to investigate their influence on electrochemical properties. The formation of V, Co-codoped TiO2(B) nanobelts with widths of 20 and 60 nm is demonstrated using X-ray diffraction, X-ray photoelectron spectroscopy, inductively coupled plasma–optical emission spectrometry and field-emission scanning electron microscopy analyses. In addition, the electrochemical properties of the samples are tested by cyclic voltammetry, charging/discharging, and cyclic performance techniques. Compared to other... 

    SnO2 nanowires on carbon nanotube film as a high performance anode material for flexible Li-ion batteries

    , Article Journal of Nanostructures ; Volume 8, Issue 3 , 2018 , Pages 288-293 ; 22517871 (ISSN) Abnavi, A ; Faramarzi, M. S ; Sanaee, Z ; Ghasemi, S ; Sharif University of Technology
    University of Kashan  2018
    Abstract
    Today, Li-ion batteries (LIBs) are the most common rechargeable batteries used in electronic devices. SnO2 with theoretical specific capacity of 782 mAh/g is among the best anode materials for LIBs. In this report, Threedimensional SnO2 nanowires (NWs) on carbon nanotube (CNT) thin film (SnO2 / CNT) is fabricated using a combination of vacuum filtration and thermal evaporation techniques. The resulting 3D heterostructure SnO2/CNT was characterized by X-ray diffraction, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). This fabricated SnO2/CNT electrode has been tested as a flexible and binderfree anode for LIB, which exhibits high initial discharge/charge... 

    An electrochemical synthesis of reduced graphene oxide/zinc nanocomposite coating through pulse-potential electrodeposition technique and the consequent corrosion resistance

    , Article International Journal of Corrosion ; Volume 2018 , 2018 ; 16879325 (ISSN) Moshgi Asl, S ; Afshar, A ; Yaghoubinezhad, Y ; Sharif University of Technology
    Hindawi Limited  2018
    Abstract
    Pulse-potential coelectrodeposition of reduced graphene oxide/zinc (rGO-Zn) nanocomposite coating is directly controlled upon a steel substrate from a one-pot aqueous mixture containing [GO-/Zn2+]δ+ nanoclusters. GO nanosheets are synthesized by modified Hummer's approach while Zn cations are produced in the solution and deposited on GO nanosheets using anodic dissolution technique. Eventually, nanoclusters are reduced to rGO-Zn film through an electrochemical process. Chemical composition, surface morphology, and corrosion resistance of the thin film are characterized. Results show that the corrosion resistance of rGO-Zn coating is approximately 10 times more than the bare steel. © 2018 S.... 

    Nanotextured spikes of α-Fe2O3/NiFe2O4 composite for efficient photoelectrochemical oxidation of water

    , Article Langmuir ; Volume 34, Issue 12 , 2018 , Pages 3555-3564 ; 07437463 (ISSN) Hussain, S ; Tavakoli, M. M ; Waleed, A ; Virk, U. S ; Yang, S ; Waseem, A ; Fan, Z ; Nadeem, M. A ; Sharif University of Technology
    American Chemical Society  2018
    Abstract
    We demonstrate for the first time the application of p-NiFe2O4/n-Fe2O3 composite thin films as anode materials for light-assisted electrolysis of water. The p-NiFe2O4/n-Fe2O3 composite thin films were deposited on planar fluorinated tin oxide (FTO)-coated glass as well as on 3D array of nanospike (NSP) substrates. The effect of substrate (planar FTO and 3D-NSP) and percentage change of each component (i.e., NiFe2O4 and Fe2O3) of composite was studied on photoelectrochemical (PEC) water oxidation reaction. This work also includes the performance comparison of p-NiFe2O4/n-Fe2O3 composite (planar and NSP) devices with pure hematite for PEC water oxidation. Overall, the nanostructured... 

    Degradation based operational optimization model to improve the productivity of energy systems, case study: Solid oxide fuel cell stacks

    , Article Energy Conversion and Management ; Volume 158 , 2018 , Pages 81-91 ; 01968904 (ISSN) Parhizkar, T ; Hafeznezami, S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In the present study a comprehensive thermodynamic model and degradation based optimization framework for energy management of anode supported solid oxide fuel cell (SOFC) stacks are carried out. The optimization framework determines optimum operating conditions to maximize system productivity (energy generation over system lifetime) considering degradation mechanisms. The main degradation mechanisms in anode supported SOFCs are nickel coarsening and oxidation. In this study, the optimum operating conditions regarding these degradation mechanisms to achieve maximum productivity at different target lifetimes are derived. The results show that target lifetime has a significant impact on system... 

    Alumina feeding system changes in aluminum electrochemical cell with d18 technology for energy efficiency (Case study: Almahdi-hormozal aluminum smelter)

    , Article 147th Annual Meeting and Exhibition of the Minerals, Metals and Materials Society, TMS 2018, 11 March 2018 through 15 March 2018 ; Volume Part F12 , 2018 , Pages 721-728 ; 23671181 (ISSN); 9783319725253 (ISBN) Siahooei, M. A ; Samimi, A ; Baharvand, B ; Sharif University of Technology
    Springer International Publishing  2018
    Abstract
    Aluminum reduction cells have benefited from point feeding technology for a long time, but there are still smelters which are using the old technology of center break and center feed system. Due to several factors this system is no longer approved and there have been a few attempts worldwide to upgrade these cells so as to implement the newer technology by applying mechanical and automation changes. In this paper we will present an attempt which was made in order to retrofit a so-called center break cell to point feeder cell. The results show that this project has decreased the energy consumption and anode effect frequency. Furthermore, there has been a significant increase in current... 

    Simulation analysis of inverted organic solar cells with grating structure: undesirable effects of high absorption near grating anode

    , Article Optik ; Volume 154 , February , 2018 , Pages 453-458 ; 00304026 (ISSN) Bahrami, A ; Faez, R ; Sharif University of Technology
    Elsevier GmbH  2018
    Abstract
    An inverted organic solar cell (IOSC) with nanograting array as anode of the cell has been simulated and analyzed using a combined electrical and optical approach. We have used finite difference time domain (FDTD) method for optimizing device structure. We have compared the characteristics of the IOSC with grating structure with a reference IOSC without grating structure. As a result, an improvement of 11% and 26% in power conversion efficiency (PCE) and short circuit current (JSC) compared to the reference structure was achieved. An analysis is provided on the origin of reduced fill factor (FF) in the IOSC with grating structure. We also have discussed about disadvantage of using optical... 

    Electrochemical degradation of clindamycin by anodic oxidation on SnO2-Sb coated titanium anodes

    , Article Environmental Engineering and Management Journal ; Volume 17, Issue 2 , February , 2018 , Pages 343-355 ; 15829596 (ISSN) Gholami, M ; Davoudi, M ; Farzadkia, M ; Esrafili, A ; Dolati, A ; Sharif University of Technology
    Gheorghe Asachi Technical University of Iasi, Romania  2018
    Abstract
    Degradation of Clindamycin phosphate (CMP) was studied in aqueous solutions by an anodic oxidation process under galvanostatic conditions. The electrolysis cell consisted of a Ti/SnO2-Sb anode, prepared by dip-coating technique, and a 316 stainless steel cathode, both of which had a surface area of 6 cm2. The effects of critical factors, including CMP concentration, current density, initial pH, and the supporting electrolyte were evaluated. The electrochemical oxidation of CMP was controlled by mass transport within the studied range. The kinetic analysis indicated that the degradation reactions followed pseudo-first-order equation. The rate of CMP decay, as well as that of COD removal,... 

    SnO2@a-Si core-shell nanowires on free-standing CNT paper as a thin and flexible Li-ion battery anode with high areal capacity

    , Article Nanotechnology ; Volume 28, Issue 25 , 2017 ; 09574484 (ISSN) Abnavi, A ; Sadati Faramarzi, M ; Abdollahi, A ; Ramzani, R ; Ghasemi, S ; Sanaee, Z ; Sharif University of Technology
    Institute of Physics Publishing  2017
    Abstract
    Here, we report 3D hierarchical SnO2 nanowire (NW) core-amorphous silicon shell on free-standing carbon nanotube paper (SnO2@a-Si/CNT paper) as an effective anode for flexible lithium-ion battery (LIB) application. This binder-free electrode exhibits a high initial discharge capacity of 3020 mAh g-1 with a large reversible charge capacity of 1250 mAh g-1 at a current density of 250 mA g-1. Compared to other SnO2 NW or its core-shell nanostructured anodes, the fabricated SnO2@a-Si/CNT structure demonstrates an outstanding performance with high mass loading (∼5.9 mg cm-2), high areal capacity (∼5.2 mAh cm-2), and large volumetric capacity (∼1750 mAh cm-3) after 25 cycles. Due to the... 

    Improving transparency in dye-sensitized nanostructured solar cells by optimizing nano-porous titanium dioxide photo-electrode

    , Article Journal of Materials Science: Materials in Electronics ; Volume 28, Issue 11 , 2017 , Pages 7811-7818 ; 09574522 (ISSN) Nikfarjam, A ; Mohammadpour, R ; Kasaeian, A ; Zebhi, Z ; Sharif University of Technology
    Springer New York LLC  2017
    Abstract
    Today’s the technology based on dye-sensitized solar cells (DSSCs) has an important role in all photovoltaic system technologies. DSSCs can generate electricity with various degrees of transparency; this makes it suitable for use in various industries, especially in construction industry as smart windows. In fact DSSC can produce electricity and having natural light, simultaneously. It is obvious that DSSCs need to absorb solar radiation as much as possible. Since, the effective use of all incident lights leads to an increase in cell efficiency and this increase in efficiency is related to the amount of dye adsorbed on the surface of nanostructured electrode, so higher amount of dye for... 

    A non-catalytic vapor growth regime for organohalide perovskite nanowires using anodic aluminum oxide templates

    , Article Nanoscale ; Volume 9, Issue 18 , 2017 , Pages 5828-5834 ; 20403364 (ISSN) Tavakoli, M. M ; Waleed, A ; Gu, L ; Zhang, D ; Tavakoli, R ; Lei, B ; Su, W ; Fang, F ; Fan, Z ; Sharif University of Technology
    Royal Society of Chemistry  2017
    Abstract
    In this work, a novel and facile synthesis process to fabricate single crystalline organometal halide perovskite nanowires has been successfully developed. Nanowires were grown in a high density ordered array from metal nanoclusters inside anodic aluminum oxide templates using a non-catalytic chemical vapor deposition method. Specifically, perovskite NWs were grown as a result of the reaction between methylammonium iodide (MAI) and the Pb/Sn (Pb or Sn) metal in anodic aluminum oxide templates under optimal conditions. The characterization results show that there is a reaction zone at the interface between the perovskite material and metal, at the bottom of the anodic aluminum oxide... 

    Organic halides and nanocone plastic structures enhance the energy conversion efficiency and self-cleaning ability of colloidal quantum dot photovoltaic devices

    , Article Journal of Physical Chemistry C ; Volume 121, Issue 18 , 2017 , Pages 9757-9765 ; 19327447 (ISSN) Tavakoli, M. M ; Simchi, A ; Tavakoli, R ; Fan, Z ; Sharif University of Technology
    American Chemical Society  2017
    Abstract
    This paper presents solid-state ligand exchange of spin-coated colloidal lead sulfide quantum dot (PbS QD) films by methylammonium iodide (MAI) and integration of them in depleted heterojunction solar (DHS) devices having an antireflecting (AR) nanocone plastic structure. Time-resolved photoluminescence measurements determine a shorter lifetime of the charge carries on a semiconductor (TiO2) electron transfer layer for the MAI-passivated QD films as compared with those with long-chain aliphatic or short thiol ligands. Consequently, the DHS device yields improved power conversion efficiency (>125%) relative to oleic-acid-passivated PbS QD films. Using anodized aluminum oxide templates, an...