Loading...
Search for: anodes
0.009 seconds
Total 164 records

    Study the failure of casted copper anode: The formation of bumps defects on the surface of the anode during casting

    , Article Engineering Failure Analysis ; Volume 138 , 2022 ; 13506307 (ISSN) Reza Shojaei, M ; Reza Khayati, G ; Javad Khorasani, S. M ; Assadat Yaghubi, N ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Copper anode (∼98%) is widely used to produce the cathode (99.995 wt%) in electrorefining process. These anodes sometimes become problematic from the production line due to the presence of bumps/holes on their surface. To find the reason of this defect, chemical composition of the three casted anodes was determined by the quantmeter analysis. Also, the microscopic and phase analysis were done by FESEM, EDS, XRD, and XRF for three types of anodes bump. The chemical analysis of anodes confirmed a high level of sulfur and oxygen, which have a key role in the formation of bumps. The results confirmed the presence of impurities including Cu2S, BaSO4, CaCO3 and MgCO3, which cause the formation of... 

    Bioinspired TiO2/chitosan/HA coatings on Ti surfaces: Biomedical improvement by intermediate hierarchical films

    , Article Biomedical Materials (Bristol) ; Volume 17, Issue 3 , 2022 ; 17486041 (ISSN) Rahnamaee, S. Y ; Ahmadi Seyedkhani, S ; Eslami Saed, A ; Sadrnezhaad, S. K ; Seza, A ; Sharif University of Technology
    Institute of Physics  2022
    Abstract
    The most common reasons for hard-tissue implant failure are structural loosening and prosthetic infections. Hence, in this study, to overcome the first problem, different bioinspired coatings, including dual acid-etched, anodic TiO2 nanotubes array, anodic hierarchical titanium oxide (HO), micro- and nanostructured hydroxyapatite (HA) layers, and HA/chitosan (HA/CS) nanocomposite, were applied to the titanium alloy surfaces. X-ray diffraction and FTIR analysis demonstrated that the in situ HA/CS nanocomposite formed successfully. The MTT assay showed that all samples had excellent cell viability, with cell proliferation rates ranging from 120% to 150% after 10 days. The HO coating... 

    Meta-analysis of bioenergy recovery and anaerobic digestion in integrated systems of anaerobic digestion and microbial electrolysis cell

    , Article Biochemical Engineering Journal ; Volume 178 , 2022 ; 1369703X (ISSN) Amin, M. M ; Arvin, A ; Feizi, A ; Dehdashti, B ; Torkian, A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In current study, a meta-analysis approach was used to identify and evaluate the impact of various factors on the performance of integrated systems of anaerobic digestion with microbial electrolysis cell. In this study, related articles on the topic were systematically identified and collected according to the considered criteria, and the effect size that refers to the value of the difference between variables mean (total chemical oxygen demand (TCOD) removal rate and CH4 yield) was estimated. According to the meta-analysis, fed-batch operation mode, the range of 20< temperature ≤30 °C, metal cathodes, the range of 500< anode surface area ≤5000 cm2, HRT (hydraulic retention time) >20 days,... 

    Cycling performance of LiFePO4/graphite batteries and their degradation mechanism analysis via electrochemical and microscopic techniques

    , Article Ionics ; Volume 28, Issue 1 , 2022 , Pages 213-228 ; 09477047 (ISSN) Sharifi, H ; Mosallanejad, B ; Mohammadzad, M ; Hosseini Hosseinabad, S. M ; Ramakrishna, S ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    In this work, cycling-induced aging occurring in 18650-type LiFePO4/graphite full cells at different C-rates is studied extensively. The mechanism of performance degradation is investigated using a combination of electrochemical and microstructural analyses. Half-cell studies are carried out after dismantling the full cells, using fresh and cycled LiFePO4 cathode and graphite anode to independently study them. The results show that the capacity of LiFePO4 electrodes is significantly recovered. The rate of capacity fading in the discharge state considered as irreversible capacity in the graphite is higher than LiFePO4 half cells, indicating a greater degradation in the performance of this...