Loading...
Search for: approximation-theory
0.007 seconds
Total 107 records

    Approximation algorithms for software component selection problem

    , Article 14th Asia Pacific Software Engineering Conference, ASPCE 2007, Nagoya, 4 December 2007 through 7 December 2007 ; January , 2007 , Pages 159-166 ; 15301362 (ISSN); 0769530575 (ISBN); 9780769530574 (ISBN) Haghpanah, N ; Habibi, J ; Moaven, S ; Kargar, M ; Yeganeh, H ; Sharif University of Technology
    2007
    Abstract
    Today's software systems are more frequently composed from preexisting commercial or non-commercial components and connectors. These components provide complex and independent functionality and are engaged in complex interactions. Component-Based Software Engineering (CBSE) is concerned with composing, selecting and designing such components. As the popularity of this approach and hence number of commercially available software components grows, selecting a set of components to satisfy a set of requirements while minimizing cost is becoming more difficult. This problem necessitates the design of efficient algorithms to automate component selection for software developing organizations. We... 

    Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems

    , Article IET Signal Processing ; Volume 1, Issue 4 , December , 2007 , Pages 171-181 ; 17519675 (ISSN) Tavazoei, M. S ; Haeri, M ; Sharif University of Technology
    2007
    Abstract
    The effects of using frequency-domain approximation in numerical simulation of fractional-order systems are analytically studied. The main aim in the study is to determine the number, location and stability property of the equilibriums in a fractional-order system and its frequency-based approximating counterpart. The comparison shows that the original fractional-order system and its frequency-based approximation may differ from each other in some or all issues considered in the study. Unfortunately, these differences can lead to wrong consequences in some special cases such as detecting chaos in the fractional-order systems. It is shown that using the frequency-domain approximation methods... 

    A new model in correlating the activity coefficients of aqueous electrolyte solutions with ion pair formation

    , Article Fluid Phase Equilibria ; Volume 261, Issue 1-2 , December , 2007 , Pages 313-319 ; 03783812 (ISSN) Mortazavi Manesh, S ; Taghikhani, V ; Ghotbi, C ; Sharif University of Technology
    2007
    Abstract
    In this work, the Ion Pair Modified Ghotbi-Vera Mean Spherical Approximation (IP-MGV-MSA) model was proposed to correlate the mean ionic activity coefficients (MIAC) for a number of symmetric and asymmetric aqueous electrolyte solutions at 25 °C. The new model is based on the recently proposed MGV-MSA model by Mortazavi-Manesh et al. In the IP-MGV-MSA model, the effects arising from the ion pair formation in the electrolyte solution was taken into account. Also, in the proposed model, while the cation diameter as well as the relative permittivity of water was considered to be dependent on electrolyte concentration, the anion diameter was independent of electrolyte concentration. The results... 

    Spin dynamics characterization in magnetic dots

    , Article Physica B: Condensed Matter ; Volume 399, Issue 2 , 2007 , Pages 81-93 ; 09214526 (ISSN) Mozaffari, M. R ; Esfarjani, K ; Sharif University of Technology
    2007
    Abstract
    The spin structure in a magnetic dot is studied as a function of the exchange coupling strength and dot size within the semiclassical approximation on a discrete lattice. As the exchange coupling is decreased or the size is increased, the ground state undergoes a phase change from a homogeneous single-domain ferromagnet (HSDF) to a spin vortex. The line separating these two phases has been calculated numerically for small system sizes. The dipolar interaction has been fully included in our calculations. Magnon frequencies in such a dot have also been calculated in both phases by the linearized equation of motion method. These results have also been reproduced from the Fourier transform of... 

    Scheduling to minimize gaps and power consumption

    , Article SPAA'07: 19th Annual Symposium on Parallelism in Algorithms and Architectures, San Diego, CA, 9 June 2007 through 11 June 2007 ; 2007 , Pages 46-54 ; 159593667X (ISBN); 9781595936677 (ISBN) Demaine, E.D ; Ghodsi, M ; Hajiaghayi, M. T ; Sayedi Roshkhar, A. S ; Zadimoghaddam, M ; Sharif University of Technology
    2007
    Abstract
    This paper considers scheduling tasks while minimizing the power consumption of one or more processors, each of which can go to sleep at a fixed cost α. There are two natural versions of this problem, both considered extensively in recent work: minimize the total power consumption (including computation time), or minimize the number of "gaps" in execution. For both versions in a multiprocessor system, we develop a polynomial-time algorithm based on sophisticated dynamic programming. In a generalization of the power-saving problem, where each task can execute in any of a specified set of time intervals, we develop a (1 + 23 α)-approximation, and show that dependence on α is necessary.... 

    Dynamic behavior and modal control of beams under moving mass

    , Article Journal of Sound and Vibration ; Volume 306, Issue 3-5 , 2007 , Pages 712-724 ; 0022460X (ISSN) Nikkhoo, A ; Rahimzadeh Rofooei, F ; Shadnam, M. R ; Sharif University of Technology
    Academic Press  2007
    Abstract
    The constitutive equation of an Euler-Bernoulli beam under the excitation of moving mass is considered. The dynamics of the uncontrolled system is governed by a linear, self-adjoint partial differential equation. A Dirac-delta function is used to describe the position of the moving mass along the beam and its inertial effects. An approximate formulation to the problem is obtained by limiting the inertial effect of the moving mass merely to the vertical component of acceleration. Having defined a "critical velocity" in terms of the fundamental period and span of the beam, it is shown that for smaller velocities, the approximate and exact approaches to the problem almost coincide. Since, the... 

    Fuzzy wavelet modeling using data clustering

    , Article 1st IEEE Symposium on Computational Intelligence and Data Mining, CIDM 2007, Honolulu, HI, 1 April 2007 through 5 April 2007 ; 2007 , Pages 114-119 ; 1424407052 (ISBN); 9781424407057 (ISBN) Sadati, N ; Marami, B ; Sharif University of Technology
    2007
    Abstract
    In this paper, a novel approach for tuning the parameters of fuzzy wavelet systems which are used for modeling of nonlinear and complex systems is proposed. In fuzzy inference system, each fuzzy rule is analogous to a wavelet basis function multiplied by a coefficient. Using clustering techniques, the center of these basis functions are located in the detected center of clusters. In this way, not only the approximation accuracy is increased, but also the number of unknown parameters is decreased. The feasibility of the proposed method is shown by modeling two highly nonlinear functions. The comparison of the results using the proposed approach, with the previous schemes, shows the... 

    Numerical investigation of steady density currents flowing down an incline using v2̄ - F turbulence model

    , Article Journal of Fluids Engineering, Transactions of the ASME ; Volume 129, Issue 9 , 2007 , Pages 1172-1178 ; 00982202 (ISSN) Khakzad, N ; Firoozabadi, B ; Farhanieh, B ; Sharif University of Technology
    2007
    Abstract
    The governing equations of two-dimensional steady density currents are solved numerically using a finite volume method. The v2̄-f turbulence model, based on standard k - s model, is used for the turbulence closure. In this method, all Reynolds stress equations are replaced with both a transport equation for v2̄ and an elliptic relaxation equation for f, a parameter closely related to the pressure strain redistribution term. The Simple-C procedure is used for pressure-velocity coupling. In addition, Boussinesq's approximation is used to obtain the momentum equation. The computed height of the progressive density current is compared to the measured data in the literature, resulting in good... 

    Analysis of time-based random waypoint mobility model for wireless mobile networks

    , Article 4th International Conference on Information Technology-New Generations, ITNG 2007, Las Vegas, NV, 2 April 2007 through 4 April 2007 ; 2007 , Pages 42-47 ; 0769527760 (ISBN); 9780769527765 (ISBN) Nayebi, A ; Rahimi, M. R ; Sarbazi Azad, H ; Sharif University of Technology
    2007
    Abstract
    In this paper Time-Based Random Waypoint (TBRWP) model is analyzed in detail. Random waypoint model has been studied in mobility literature extensively. Traditional RWP model is based on the independency of the velocity and trajectory; TBRWP, instead, focuses on the independency of motion time and trajectory. Basic model is introduced and general method to evaluate the asymptotical probability density function (PDF) is presented. The model for the one-dimensional and two-dimensional cases with uniform destination distribution in unit square area is solved and exact closed form formulas is obtained. Moreover, normal distribution of nodes in one- and two- dimensional models is investigated and... 

    An asymptotic solution to transverse free vibrations of variable-section beams

    , Article Journal of Sound and Vibration ; Volume 304, Issue 3-5 , 2007 , Pages 530-540 ; 0022460X (ISSN) Firouz Abadi, R. D ; Haddadpour, H ; Novinzadeh, A. B ; Sharif University of Technology
    Academic Press  2007
    Abstract
    The transverse free vibration of a class of variable-cross-section beams is investigated using the Wentzel, Kramers, Brillouin (WKB) approximation. Here the governing equation of motion of the Euler-Bernoulli beam including axial force distribution is utilized to obtain a singular differential equation in terms of the natural frequency of vibration and a WKB expansion series is applied to find the solution. Based on this formulation, a closed form solution is obtained for determination of natural vibration mode shapes and the corresponding frequencies. The first four terms of this asymptotic solution are simplified for homogenous beams to give a compact third-order WKB approximation. Next,... 

    The linear stability of a developing thermal front in a porous medium: the effect of local thermal non-equilibrium

    , Article International Journal of Heat and Mass Transfer ; Volume 50, Issue 15-16 , 2007 , Pages 3090-3099 ; 00179310 (ISSN) Nouri Borujerdi, A ; Noghrehabadi, A. R ; Rees, D. A. S ; Sharif University of Technology
    2007
    Abstract
    In this paper we analyze the stability of the developing thermal boundary layer which is induced by a step-change in the temperature of the lower horizontal boundary of a uniformly cold semi-infinite porous medium. Particular attention is paid to the influence of local thermal non-equilibrium between the fluid and solid phases and how this alters the stability criterion compared with corresponding criterion when the phases are in local thermal equilibrium. A full linear stability analysis is developed without approximation, and this yields a parabolic system of equations for the evolving disturbances. Criteria for the onset of convection are derived as a function of the three available... 

    A higher-order Boussinesq-type model with moving bottom boundary: Applications to submarine landslide tsunami waves

    , Article International Journal for Numerical Methods in Fluids ; Volume 53, Issue 6 , 2007 , Pages 1019-1048 ; 02712091 (ISSN) Ataie Ashtiani, B ; Najafi Jilani, A ; Sharif University of Technology
    2007
    Abstract
    A two-dimensional depth-integrated numerical model is developed using a fourth-order Boussinesq approximation for an arbitrary time-variable bottom boundary and is applied for submarine-landslide-generated waves. The mathematical formulation of model is an extension of (4,4) Padé approximant for moving bottom boundary. The mathematical formulations are derived based on a higher-order perturbation analysis using the expanded form of velocity components. A sixth-order multi-step finite difference method is applied for spatial discretization and a sixth-order Runge-Kutta method is applied for temporal discretization of the higher-order depth-integrated governing equations and boundary... 

    Unconditionally stable fully explicit finite difference solution of solidification problems

    , Article Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science ; Volume 38, Issue 1 , 2007 , Pages 121-142 ; 10735615 (ISSN) Tavakoli, R ; Davami, P ; Sharif University of Technology
    2007
    Abstract
    An unconditionally stable fully explicit finite difference method for solution of conduction dominated phase-change problems is presented. This method is based on an asymmetric stable finite difference scheme for approximation of diffusion terms and application of the temperature recovery method as a phase-change modeling method. The computational cost of the presented method is the same as the explicit method per time-step, while it is free from time-step limitation due to stability criteria. It robustly handles isothermal and nonisothermal phase-change problems and is very efficient when the global temperature field is desirable (not accurate front position). The robustness, stability,... 

    An enriched finite element algorithm for numerical computation of contact friction problems

    , Article International Journal of Mechanical Sciences ; Volume 49, Issue 2 , 2007 , Pages 183-199 ; 00207403 (ISSN) Khoei, A. R ; Nikbakht, M ; Sharif University of Technology
    2007
    Abstract
    In this paper, the extended finite element method (XFEM) is employed to model the presence of discontinuities caused by frictional contact. The method is used in modeling strong discontinuity within a standard finite element framework. In extended finite element method (XFEM) technique, the special functions are included in standard FEM to simulate discontinuity without considering the boundary conditions in meshing the domain. In this study, the classical finite element approximation is enriched by applying additional terms to simulate the frictional behavior of contact between two bodies. These terms, which are included for enrichment of nodal displacements, depend on the contact condition... 

    Numerical study of natural convection in vertical enclosures using a novel non-Boussinesq algorithm

    , Article Numerical Heat Transfer; Part A: Applications ; Volume 52, Issue 9 , 2007 , Pages 849-873 ; 10407782 (ISSN) Darbandi, M ; Hosseinizadeh, S. F ; Sharif University of Technology
    2007
    Abstract
    This article applies a novel non-Boussinesq numerical algorithm to solve the free-convection problem in a wide range of thin to thick vertical cavities subject to different side-wall temperatures. In this regard, the compressible flow equations are solved using a primitive incompressible method. No Boussinesq approximation and low Mach number consideration are included in the formulation. To implement the compressibility effect, the density field is calculated via the equation of state for gas. The temperature gradient is suitably varied to generate different low to high thermobuoyant fields, where the Boussinesq approximation may or may not be valid. Contrary to published works on the thin... 

    Coupling of the electronic band structure with Ag phonon modes in Y123 and Y124 systems

    , Article 4th International Conference on Magnetic and Superconducting Materials, MSM'05, Agadir, 5 September 2006 through 8 September 2006 ; Volume 3, Issue 9 , 2006 , Pages 3140-3143 ; 18626351 (ISSN) Khosroabadi, H ; Mossalla, B ; Akhavan, M ; Sharif University of Technology
    2006
    Abstract
    Ab initio frozen-phonon calculations have been performed for k = 0 A g Raman modes of two superconducting systems Y123 and Y124. We have used the local density approximation pseudopotential method in our calculations by VASP code. Results have been compared with other computational and experimental data for similar systems. Then we present changes of electronic band structure with the change of ionic positions in each Ag mode for both systems. © 2006 WILEY-VCH Verlag GmbH & Co. KGaA  

    Phonon frequency calculations of GdBCO and PrBCO

    , Article 4th International Conference on Magnetic and Superconducting Materials, MSM'05, Agadir, 5 September 2006 through 8 September 2006 ; Volume 3, Issue 9 , 2006 , Pages 3162-3165 ; 18626351 (ISSN) Tavana, A ; Khasroabadi, H ; Akhavan, M ; Sharif University of Technology
    2006
    Abstract
    Ab initio frozen-phonon calculations have been performed for k = 0 A g Raman modes of superconducting GdBa2Cu3O 7 and insulating PrBa2Cu3O7. We have used the generalized gradient approximation full-potential linear augmented plane-wave method in our calculations by Wien2k code. Results have been compared with other computational and experimental data for similar systems. © 2006 WILEY-VCH Verlag GmbH & Co. KGaA  

    Crack analysis in orthotropic media using the extended finite element method

    , Article Thin-Walled Structures ; Volume 44, Issue 9 , 2006 , Pages 1031-1038 ; 02638231 (ISSN) Asadpoure, A ; Mohammadi, S ; Vafai, A ; Sharif University of Technology
    2006
    Abstract
    An extended finite element method has been proposed for modeling crack in orthotropic media. To achieve this aim a discontinuous function and two-dimensional asymptotic crack-tip displacement fields are used in a classical finite element approximation enriched with the framework of partition of unity. It allows modeling crack by standard finite element method without explicitly defining and re-meshing of surfaces of the crack. In this study, fracture properties of the models are defined by the mixed-mode stress intensity factors (SIFs), which are obtained by means of the domain form of the interaction integral (M-integral). Numerical simulations are performed to verify the approach, and the... 

    Modeling crack in orthotropic media using a coupled finite element and partition of unity methods

    , Article Finite Elements in Analysis and Design ; Volume 42, Issue 13 , 2006 , Pages 1165-1175 ; 0168874X (ISSN) Asadpoure, A ; Mohammadi, S ; Vafai, A ; Sharif University of Technology
    2006
    Abstract
    The problem of crack modeling in 2D orthotropic media is considered. The extended finite element method has been adopted for modeling and analyzing a crack and its domain numerically. In this method, first the finite element model without any discontinuities is created and then the two-dimensional asymptotic crack-tip displacement fields with a discontinuous function are added to enrich the finite element approximation using the framework of partition of unity. The main advantage is the ability of the method in taking into consideration a crack without any explicit meshing of the crack surfaces, and the growth of crack can readily be applied without any remeshing. Mixed-mode stress intensity... 

    An approximation algorithm for d1-optimal motion of a rod robot with fixed rotations

    , Article International Journal of Computer Mathematics ; Volume 83, Issue 3 , 2006 , Pages 357-370 ; 00207160 (ISSN) Abam, M. A ; Ghodsi, M ; Sharif University of Technology
    2006
    Abstract
    Given a translating and rotating rod robot in a plane in the presence of polygonal obstacles with the initial and final placements of the rod known, the d1-optimal motion planning problem is defined as finding a collision-free motion of the rod such that the orbit length of a fixed but arbitrary point F on the rod is minimized. In this paper we study a special case of this problem in which the rod can translate freely, but can only rotate by some pre-specified given angles around F. We first characterize the d1-optimal motion of the robot under the given conditions and then present a (1 + ε)-approximation algorithm for finding the optimal path. The running time of the algorithm is bounded by...