Loading...
Search for: beams-and-girders
0.011 seconds
Total 213 records

    Modeling of magnetic shape memory alloy plates for pressure sensor application

    , Article Journal of Intelligent Material Systems and Structures ; Volume 32, Issue 2 , 2021 , Pages 196-207 ; 1045389X (ISSN) Sayyaadi, H ; Naderi, H ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    This article investigates the basis for pressure sensor application based on the magnetic shape memory effect in membranes. Von Karmans nonlinear terms are considered in strain–displacement relationships of thin films, and a new method is presented for solution of large deflections of thin films with arbitrary boundary condition. In this study, the equations of motion of magnetic shape memory alloys are extended. In pressurized membranes, the complex distribution of mechanical stress can cause the martensitic reorientation, which is the underlying mechanism for sensing applications in magnetic shape memory alloys. To examine the obtained model, the governing equations of magnetic shape... 

    The effects of elevated temperatures on the performance of concrete-filled pultruded GFRP tubular columns

    , Article Thin-Walled Structures ; Volume 169 , 2021 ; 02638231 (ISSN) Tabatabaeian, M ; Khaloo, A ; Azizmohammadi, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Usage of concrete-filled pultruded glass fiber-reinforced polymer (GFRP) tubes (CFPGT) as columns can increase the service life of structures. However, marine structures such as oil platforms are always prone to fire because of the low resistance to the elevated temperatures. The purpose of this investigation is to evaluate the effects of concrete core strength (30 and 60 MPa), and exposure temperature (25, 100, 200, 300, and 400 °C) and time (60 and 120 min) on the compressive and bond behavior of CFPGTs. The properties of unexposed and exposed concrete core, pultruded GFRP hollow tubes, and CFPGTs were determined via compressive and disk-split tests. Also, the push-out test was used to... 

    On the out-of-plane dynamic response of horizontally curved beams resting on elastic foundation traversed by a moving mass

    , Article Journal of Sound and Vibration ; Volume 479 , 2020 Abdoos, H ; Khaloo, A. R ; Foyouzat, M. A ; Sharif University of Technology
    Academic Press  2020
    Abstract
    In this paper, the dynamic behavior of Horizontally Curved Beams (HCBs) resting on an elastic foundation and subjected to a moving mass is investigated. The governing coupled non-linear differential equations of equilibrium are derived, where Coriolis acceleration, centrifugal force and rotary inertia are incorporated in the problem formulation. In the proposed analytical solution, by employing the transition matrix technique, the governing differential equations of motion are subsequently transformed into a new system of linear ordinary differential equations which can be solved using standard numerical procedures. The accuracy as well as the robustness of the solution is ascertained... 

    Performance-based seismic design and assessment of low-rise steel special moment resisting frames with block slit dampers using endurance time method

    , Article Engineering Structures ; Volume 224 , 2020 Ahmadie Amiri, H ; Pournamazian Najafabadi, E ; Esmailpur Estekanchi, H ; Ozbakkaloglu, T ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Block Slit Dampers (BSDs) are recently developed metallic yielding dampers for passive structural control. This type of damping devices can provide designers with an option of using highly ductile systems, such as steel special moment resisting frames (steel SMRFs), in important structures located in regions of high seismicity. The aim of this study is to obtain a performance-based seismic design (PBSD) procedure for these devices, and to assess the seismic performance levels of low-rise steel SMRF equipped with BSDs using the endurance time (ET) dynamic analysis method. For this purpose, first, the simplified behavioral model of these devices was established based on the analysis of... 

    Free vibration of joined cylindrical–hemispherical FGM shells

    , Article Archive of Applied Mechanics ; Volume 90, Issue 10 , 2020 , Pages 2185-2199 Bagheri, H ; Kiani, Y ; Bagheri, N ; Eslami, M. R ; Sharif University of Technology
    Springer  2020
    Abstract
    Free vibration response of a joined shell system including cylindrical and spherical shells is analyzed in this research. It is assumed that the system of joined shell is made from a functionally graded material (FGM). Properties of the shells are assumed to be graded through the thickness. Both shells are unified in thickness. To capture the effects of through-the-thickness shear deformations and rotary inertias, first-order shear deformation theory of shells is used. The Donnell type of kinematic assumptions is adopted to establish the general equations of motion and the associated boundary and continuity conditions with the aid of Hamilton’s principle. The resulting system of equations is... 

    Buckling and postbuckling of advanced grid stiffened truncated conical shells with laminated composite skins

    , Article Thin-Walled Structures ; Volume 149 , 2020 Bohlooly, M ; Kouchakzadeh, M. A ; Mirzavand, B ; Noghabi, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    A theoretical approach is presented to derive an explicit formula for buckling load and postbuckling path of advanced grid stiffened conical shells (stiffeners with laminated composite skins). Different types of fiber paths of grids including stringer, ring, and helical are considered. The simply supported truncated conical shell with imperfection is subjected to axial compression. Basic formulations are constructed using the classical theory of shells and von Karman type of nonlinear strain-displacement relationships. The equilibrium and compatibility equations are solved by Galerkin procedure, and an explicit relation is obtained to predict the equilibrium paths. Results for different... 

    Coupled bending-torsion flutter investigation of MRE tapered sandwich blades in a turbomachinery cascade

    , Article Thin-Walled Structures ; Volume 152 , 2020 Bornassi, S ; Navazi, H. M ; Haddadpour, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    This paper studies the effects of bending-torsion coupling on the flutter stability boundaries of a turbomachinery cascade with Magnetorheological Elastomer (MRE) based sandwich blades. The blade structure is considered as a non-uniform sandwich beam with an embedded MRE core. The governing equations of bending and torsional motions are obtained based on the classical sandwich beam theory and the unsteady Whitehead aerodynamic theory is applied for modeling of the aerodynamic flow. The equations of motion governing on the coupled aeroelastic system have been derived in a discrete form by Lagrange's equations and using the assumed modes method. The stability analysis is performed and the... 

    Seismic reliability analysis of steel moment-resisting frames retrofitted by vertical link elements using combined series–parallel system approach

    , Article Bulletin of Earthquake Engineering ; 24 November , 2020 Mohsenian, V ; Hajirasouliha, I ; Filizadeh, R ; Sharif University of Technology
    Springer Science and Business Media B.V  2020
    Abstract
    The eccentric bracing system equipped with vertical links is capable of providing high levels of stiffness, strength and ductility, and therefore, can be efficiently used for seismic retrofit of existing structures. This study aims to investigate the seismic reliability of steel moment-resisting frames retrofitted by this system using a novel combined series–parallel system approach. The seismic response of 4, 8 and 12-storey steel moment-resisting frames (MRFs) are evaluated under a set of design basis earthquakes (DBE) before and after retrofitting intervention. Adopting an engineering demand parameter approach (EDP-Based) for reliability assessment and development of analytical models for... 

    Strength and stiffness estimation of damaged reinforced concrete shear walls using crack patterns

    , Article Structural Control and Health Monitoring ; Volume 27, Issue 4 , February , 2020 Madani, H. M ; Dolatshahi, K. M ; Sharif University of Technology
    John Wiley and Sons Ltd  2020
    Abstract
    The purpose of this paper is to estimate the stiffness and strength of damaged rectangular reinforced concrete shear walls after an earthquake using surface crack patterns. Assessing the damage severity of buildings after an earthquake is an important part of the emergency inspection operation of buildings. Expert inspectors tag buildings into two categories of safe or unsafe that are usually affected by subjective decisions, which may result in catastrophic events reported in previous earthquakes. In this research, an extensive database on the images of damaged rectangular reinforced concrete shear walls (RCSWs) is collected and used to develop predictive equations for updated stiffness and... 

    Detection of structural damages by model updating based on singular value decomposition of transfer function subsets

    , Article Structural Control and Health Monitoring ; Volume 27, Issue 11 , 2020 Rahai, M ; Esfandiari, A ; Bakhshi, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2020
    Abstract
    In this paper, a sensitivity-based finite element (FE) model updating method using singular value decomposition (SVD) of frequency response function (FRF) is introduced. An exact sensitivity equation is proposed by incorporating measured responses of a damaged structure in the mathematical formulations. A set of incompletely measured natural frequencies of a damaged structure and mode shapes of the intact structure are used to deal with incomplete measurement without the implementation of FE model reduction or data expansion algorithms. The insights provided from the variation of SVD of transfer functions are used for the selection of proper updating frequency ranges. The appropriate... 

    Analysis and modification of a common energy harvesting system using magnetic shape memory alloys

    , Article Journal of Intelligent Material Systems and Structures ; 2020 Sayyaadi, H ; Mehrabi, M ; Hoviattalab, M ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    In this paper, a common energy harvester is investigated which uses a specimen of magnetic shape memory alloy (MSMA). The aim of this study is to improve system performance and to evaluate the magneto-mechanical loading on the MSMA material. Since demagnetization effect is not included in the employed original MSMA model, a method to incorporate this effect is proposed which has a good performance for the specific magneto-mechanical loading of this problem. In order to decrease the need for bias magnetic field and increase system efficiency, a new return mechanism for the MSMA specimen is proposed. The results indicate that the maximum harvested power from the improved system is obtained at... 

    Modeling of magnetic shape memory alloy plates for pressure sensor application

    , Article Journal of Intelligent Material Systems and Structures ; 2020 Sayyaadi, H ; Naderi, H ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    This article investigates the basis for pressure sensor application based on the magnetic shape memory effect in membranes. Von Karmans nonlinear terms are considered in strain–displacement relationships of thin films, and a new method is presented for solution of large deflections of thin films with arbitrary boundary condition. In this study, the equations of motion of magnetic shape memory alloys are extended. In pressurized membranes, the complex distribution of mechanical stress can cause the martensitic reorientation, which is the underlying mechanism for sensing applications in magnetic shape memory alloys. To examine the obtained model, the governing equations of magnetic shape... 

    Free vibration of a functionally graded annular sector plate integrated with piezoelectric layers

    , Article Applied Mathematical Modelling ; Volume 79 , 2020 , Pages 341-361 Shahdadi, A ; Rahnama, H ; Sharif University of Technology
    Elsevier Inc  2020
    Abstract
    Based on the first order shear deformation theory, free vibration behavior of functionally graded (FG) annular sector plates integrated with piezoelectric layers is investigated. The distribution of electric potential along the thickness direction of piezoelectric layers which is assumed to be a combination of linear and sinusoidal functions, satisfies both open and closed circuit electrical boundary conditions. Through a reformulation of governing equations and harmonic motion assumption, a novel decoupling method is suggested to transform the six second order coupled partial differential equations of motion into two eighth order and fourth order equations. A Fourier series method is then... 

    Monotonic behavior of C and L shaped angle shear connectors within steel-concrete composite beams: An experimental investigation

    , Article Steel and Composite Structures ; Volume 35, Issue 2 , 2020 , Pages 237-247 Shariati, M ; Tahmasbi, F ; Mehrabi, P ; Bahadori, A ; Toghroli, A ; Sharif University of Technology
    Techno Press  2020
    Abstract
    Shear connectors are essential elements in the design of steel-concrete composite systems. These connectors are utilized to prevent the occurrence of potential slips at the interface of steel and concrete. The two types of shear connectors which have been recently employed in construction projects are C- and L-shaped connectors. In the current study, the behavior of C and L-shaped angle shear connectors is investigated experimentally. For this purpose, eight push-out tests were composed and subjected to monotonic loading. The load-slip curves and failure modes have been determined. Also, the shear strength of the connectors has been compared with previously developed relationships. Two... 

    Flexural behavior of timber beams strengthened with pultruded glass fiber reinforced polymer profiles

    , Article Composite Structures ; Volume 241 , 2020 Shekarchi, M ; Vatani Oskouei, A ; Raftery, G. M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Timber is one of the materials widely used in construction and industry all over the world. In this paper, the behavior of strengthened timber beams made of beech wood (Fagus orientalis) were investigated experimentally. The composite timber beams were reinforced with flat, U-shaped, and L-shaped pultruded Glass Fiber Reinforced Polymer (GFRP) profiles. The GFRPs were attached to tensile or both tensile and compressive surfaces of beams. Altogether, 24 specimens, including 20 strengthened beams and 4 un-strengthened (control) beams, were tested under three-point bending test. Flexural behavior of specimens was evaluated through their load versus mid-span displacement curves, ultimate load... 

    Experimental investigation on the behavior of RC arches strengthened by GFRP composites

    , Article Construction and Building Materials ; Volume 235 , 28 February , 2020 Khaloo, A ; Moradi, H ; Kazemian, A ; Shekarchi, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    An experimental investigation on the behavior of RC arches strengthened by glass fiber-reinforced polymer (GFRP) composites is presented. Twelve samples were tested in order to determine influence of arrangement and number of GFRP layers on RC arches having different steel reinforcement ratios. The arches were tested under centrally concentrated point load using displacement control condition. Load-deflection behavior, failure mode, GFRP debonding, angle between hinge formation and supports and crack propagation pattern are studied extensively. Based on test results, extrados strengthening is much more effective than intrados strengthening in increasing ultimate load carrying capacity which... 

    Dynamic stability analysis of a sandwich beam with magnetorheological elastomer core subjected to a follower force

    , Article Acta Mechanica ; Volume 231, Issue 9 , 2020 , Pages 3715-3727 Rokn Abadi, M ; Yousefi, M ; Haddadpour, H ; Sadeghmanesh, M ; Sharif University of Technology
    Springer  2020
    Abstract
    In the present study, the effect of using magnetorheological elastomer materials and a magnetic field on the dynamic stability of a sandwich beam under a follower force has been investigated for various boundary conditions. The considered sandwich beam consists of a magnetorheological elastomer core constrained by elastic layers. The structural governing equations are derived using Hamilton’s principle and solved by the finite element method. The validity of the result is examined by comparison with those in the literature. The effects of variation in the parameters such as magnetic field intensity and the thickness of the layers on the stability of the sandwich beam are studied. Finally,... 

    Effects of magnetoelastic loads on free vibration characteristics of the magnetorheological-based sandwich beam

    , Article Journal of Intelligent Material Systems and Structures ; Volume 31, Issue 7 , 2020 , Pages 1015-1028 Rokn Abadi, M. R ; Shahali, P ; Haddadpour, H ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    In this contribution, we have investigated the effects of magnetoelastic loads on free vibration characteristics of the magnetorheological-based sandwich beam. The considered sandwich beam consists of a magnetorheological core with elastic top and base layers. For these means, the structural governing equations are derived using the Hamilton principle and solved by the finite element method. The results are validated in comparison with the existing results in the literature. The effects of variation in the parameters such as magnetic field intensity and the thickness of the core and top layers on the deviation of the first natural frequency and the corresponding loss factor are studied as... 

    On the geometrically nonlinear analysis of sandwich shells with viscoelastic core: a layerwise dynamic finite element formulation

    , Article Composite Structures ; Volume 230 , 2019 ; 02638223 (ISSN) Hosseini Kordkheili, A ; Khorasani, R ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The objective of this work is to present a finite element formulation for dynamic analysis of sandwich shells with viscoelastic core under large deformation. The present study is based on an incremental updated Lagrangian approach together with the Newmark integration scheme. The viscoelastic constitutive model which is used to define the behavior of the core, comes from the Riesz theorem and the corresponding creep functions are estimated using Dirichlet-Prony series. Also, the viscoelastic deferred strain is derived in an appropriate incremental form using the state variables. The employed layerwise shell element which is based on zig-zag theory has eight nodes on its mid layer. What's... 

    Stress intensity factors of multiple axisymmetric interface cracks in an isotropic layer with FGM coating under torsional loading

    , Article Multidiscipline Modeling in Materials and Structures ; Volume 15, Issue 6 , 2019 , Pages 1352-1365 ; 15736105 (ISSN) Tavakoli, A ; Pourseifi, M ; Rezaei, S ; Sharif University of Technology
    Emerald Group Publishing Ltd  2019
    Abstract
    Purpose: The purpose of this paper is to provide a theoretical analysis of the fracture behavior of multiple axisymmetric interface cracks between a homogeneous isotropic layer and its functionally graded material (FGM) coating under torsional loading. Design/methodology/approach: In this paper, the authors employ the distributed dislocation technique to the stress analysis, an FGM coating-substrate system under torsional loading with multiple axisymmetric cracks consist of annular and penny-shaped cracks. First, with the aid of the Hankel transform, the stress fields in the homogeneous layer and its FGM coating are obtained. The problem is then reduced to a set of singular integral equations...