Loading...
Search for: catalyst
0.023 seconds
Total 780 records

    Synthesis of Graphene-Based Magnetic Nanocatalyst Supported Ag Nanoparticles for Alcohols Oxidation

    , M.Sc. Thesis Sharif University of Technology Ataei Kachouei, Shiva (Author) ; Mahmoodi Hashemi, Mohammad (Supervisor)
    Abstract
    In this thesis the graphene-based magnetic nanocatalyst was synthesized. The surface of this catalyst was cavered by silica and AgNPs. In addithion of simple sepration by magnetbar, yeild of reaction was promoted by surface modification. Catalyst structure was verified by transmission electron microscopy , scanning electron microscope, fourier transform infrared spectroscopy, X-ray diffraction and Energy dispersive spectroscopy.At the end catalytic activity was examined by oxidation reaction in persense of different alcohols. The oxidation of benzylic alcohol with electron withdrawing substituents was more difficult and the yield was lower, but electron donor substituents effect positively... 

    Synthesis of Platinum Nanoparticles and Study on its Application as a Catalyst and an Adsorbent of the Radioactive Elements

    , M.Sc. Thesis Sharif University of Technology Mehdizadeh, Sofia (Author) ; Outokesh, Mohammad (Supervisor) ; Ahmadi, Javad (Supervisor) ; Sadjadi, Sodeh (Co-Advisor)
    Abstract
    The present study was aimed at investigating the use of platinum and platinum nanoparticles stabilized on zeolite as catalyst for the reduction reaction of p-nitrotoluene as one of the dangerous pollutants. The adsorption properties of platinum based on zeolite have been studied for some heavy metals. Monodispersed platinum nanoparticles were synthesized through reduction of H2PtCl6 by ethanol in the presence of polyvinyl pyrrolidone (PVP) as a stabilizer, and then were immobilized on four types of zeolites. The study then focused on elaboration of the catalytic activity of the nano catalysts under different operational conditions. In order to investigate the catalytic properties, operating... 

    Synthesis of Pt- Nanoparticle in Ionic Liquid Coated on Alumina and the Investigation of the Nature and Thickness of Ionic Liquid on Catalyst Pt / Al2O3

    , M.Sc. Thesis Sharif University of Technology Zeidabadi Nejad, Leila (Author) ; Gholami, Mohammad Reza (Supervisor)
    Abstract
    In this project ionic liquid and there mixtures were coated on Pt/ Al2O3 , the prepared catalyst were characterization by SEM, BET and XRD techniques.In the first stage the effect of the coated ionic liquid on the Pt/Al2O3 were investigated, on the rate of C=C hydrogenation. in the second stage effect of the thickness of ionic liquids on the rate of the cyclohexene hydrogenation were studied. Result revelad that by increasing the ionic liquid polarity, the reaction rate increased. Also the reaction rate decreased by increasing the thickness of ionic liquid  

    Synthesis of MoS2 Nanoparticles and Their Application as Nanocatalyst for Hydrodesulfurization Process

    , M.Sc. Thesis Sharif University of Technology Parviz, Dorsa (Author) ; Kazemeini, Mohammad (Supervisor) ; Rashidi, Alimorad (Supervisor)
    Abstract
    Highly active unsupported MoO3 and (Co) MoO3 catalysts were synthesized utilizing the solution combustion method where the Ammonium molybdate powder and an organic additive were used as precursors. Different organic materials including Ethylene Diamin Tetra-acetic acid (EDTA), Polyethylene Glycol 200 (PEG 200), Sorbitol and Urea were used as additive in order to investigate the effect of additive structure on morphology and particle size of products. Also various reaction parameters such as the additive/Mo molar ratio, concentration of metal ion in solution, pH of the reaction and temperature of the synthesis media were changed to study effects on product morphology and size. Outcomes were... 

    Controlled Microwave-assisted Synthesis of ZnFe2O4 Nanoparticles and Investigation of their Catalytic Activity in Organic Reactions

    , M.Sc. Thesis Sharif University of Technology Doulabi, Malihe (Author) ; Matloubi Moghaddam, Firouz (Supervisor)
    Abstract
    ZnFe2O4 nanoparticles have been successfully prepared through a controlled microwave–assisted co-precipitation as well as conventional co-precipitation. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM) were used for the structural, morphological and magnetic investigation of the product. Average particle size was obtained as 12 nm from XRD. Catalytic activity of ZnFe2O4 nanopowder for O-acylation of alcohol and phenol has been investigated. A trace amount of ZnFe2O4 has been effectively used as a nanocatalyst for the acylation of alcohol and phenol in acetic anhydride.

     

    Synthesis of Nano H-ZSM-5 for Methanol Conversion to Propylene

    , M.Sc. Thesis Sharif University of Technology Firoozi, Mohammad (Author) ; Baghghalha, Morteza (Supervisor) ; Asadi, Mousa (Co-Advisor)
    Abstract
    Nano and microsize H-ZSM-5 were synthesized by hydrothermal crystallization method with same batch composition to investigate the effect of crystallite size of H-ZSM-5 in the methanol conversion to propylene (MTP) process. The average particle size of nano and microsize H-ZSM-5 were obtained in the range of 0.15- 0.2 and 1- 2 µm, respectively. Also, optimized catalyst of Petrochemical Research and Technology Company was synthesized using terapropylammonium bromide as template. Nowadays, terapropylammonium bromide (TPABr) is cheeper than terapropylammonium hydroxide (TPAOH); therefore we used it as tamplate. Activity tests were conducted at operating conditions of T= 460˚C, P=1 atm and WHSV... 

    Direct Synthesis of Dimethyl Ether from Carbon Dioxide

    , M.Sc. Thesis Sharif University of Technology Taher Aslani, Mohammad Reza (Author) ; Kazemeini, Mohammad (Supervisor) ; Aghaziarati, Mahmoud (Co-Advisor) ; Kazemian, Masoud (Co-Advisor)
    Abstract
    In this research, direct synthesis of dimethyl ether (DME) from CO2 hydrogenation in three phase slurry reactor was investigated. Bifunctional catalysts composed of Cu- ZnO-Al2O3-ZrO2 as hydrogenation component and zeolite Na-Mordenite as dehydration component, with different Al2O3 and ZrO2 contents were synthesized by coprecipitating sedimentation and influences of Al2O3 and ZrO2 on CO2 conversion and DME selectivity were evaluated. Results show, both Al2O3 and ZrO2 enhanced conversion, but Al2O3 markedly increase selectivity of DME. However, when the total contents of Al2O3 and ZrO2 was increased up to 16 wt% , CO2 conversion and DME selectivity remarkably decreased. BET and XRD analyzes... 

    (Synthesis of ZSM-5 Zeolite Doped with Cations such as Zn(II) & Fe(II

    , M.Sc. Thesis Sharif University of Technology Kazemi Zangeneh, Fatemeh (Author) ; Ghanbari, Bahram (Supervisor)
    Abstract
    In this study, we synthesized ZSM-5 and doped ZSM-5 applying cations such as Zn(II) and Fe(II). Furthermore, we synthesized [Zn,Fe]-ZSM-5 using similar method for the first time. The final products were characterised by X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy. On the other hand, the hierarchical mesoporous Zn-ZSM-5 zeolite catalyst was prepared by alkali treatment by NaOH and Zn impregnation, and its application in the conversion of methanol to gasoline (MTG) process was studied. The modified zeolite samples after modification were also characterized by FT-IR and XRD methods. Zn impregnated mesoporous catalyst Zn-Alk-Z5 exhibited dramatic improvements in... 

    Synthesis Deuterated Aromatic Compunds by Supercritical Method

    , M.Sc. Thesis Sharif University of Technology Shadjirati, Yasamin (Author) ; Outokesh, Mohammad (Supervisor) ; Sajadi, Soudeh (Supervisor)
    Abstract
    Green chemistry seeks to reduce or eliminate the use of hazardous substances in the chemical industry through the development of new products and processes .The replacement of harmful, widely used solvents and reagents is a key part of this approach. Supercritical fluid such as CO2 or water are good solvent for replaceement Exchange reactions involving the displacement of hydrogen bonded to carbon by deuterium are of interest in a broad variety of disciplines, such as the preparative chemistry of isotopically labeled materials, fundamental studies of carbonehydrogen bond activation processes, and studies of the nature of catalysts. The low cost of water and its environmental friendliness... 

    Synthesis, Characterization and Catalytic Activity of Supported Vanadium Schiff Base Complex as a Magnetically Recoverable Nanocatalyst in Epoxidation of Alkenes and Oxidation Of Sulfides

    , M.Sc. Thesis Sharif University of Technology Bahjati, Mohammad (Author) ; Bagherzadeh, Mojtaba (Supervisor)
    Abstract
    In this project, a new magnetically recoverable nanocatalyst was developed by immobilizing of vanadyl acetylacetonate, [VO(acac)2], onto surface of silica coated magnetite nanoparticlest that modified by reaction between 3-aminopropylthriethoxy silane and 5-bromosalicylaldehyde. In the first step, magnetite cores were synthesized by co-precipitation method and coated by tetraethyl orthosilicate (TEOS) and modified by 3-aminopropyltriethoxy silane to provide a precursor for Schiff base condensation reaction. In the next step, amino-functionalized silica coated magnetite nanoparticles were reacted by 5-bromosalicylaldehyde to formation a Schiff base moiety onto surface of magnetite coated... 

    Modified Catalyst Based on Zeolite: Preparation, Characterization and Application as Catalysts for the Isomerization of C8 Aromatics

    , M.Sc. Thesis Sharif University of Technology Yazdani, Saeed (Author) ; Gholami, Mohammad Reza (Supervisor) ; Salari, Hadi (Co-Advisor)
    Abstract
    In this project Mordinate and Eu-1 zeolite were synthesized by hydrothermal method and then bifunctional catalysts including acid-base zeolite and Pt-Al2O3 metal base were mixed and made using a planetary mill. The modified catalysts were detected by various methods such as XRD, SEM, FTIR. The aim of this project is to synthesize and characterize the modified catalysts and to escalate their catalytic properties. Our focus is primarily on the synthesis of zeolite-based catalysts modified with unique features such as having active acid sites, high thermal stability and appropriate selectivity for the purpose of investigating the mechanism and kinetics of the C8 aromatic Compounds... 

    Synthesis, Characterization and Catalytic Application of rGO based Tin Oxide Nanocatalyst in Oxidative Desulfurization Process

    , M.Sc. Thesis Sharif University of Technology Salmanzadeh Otaghsaraei, Sahar (Author) ; Kazemeini, Mohammad (Supervisor) ; Hasannia, Saeed (Supervisor)
    Abstract
    In recent years, graphene-based materials have received much attention due to their prominent physicochemical properties such as high specific surface area, high mechanical strength and rich surface functional groups. In addition to these properties, low cost and environmental safety make graphene-based materials a green catalyst for many catalytic processes, including oxidative desulfurization. Tin oxide is a substance with strong acidic sites. Recent studies have shown that the oxidative desulfurization process using tin oxide nanoparticles is a new method for producing cleaner diesel fuels. In this study, rGO based tin oxide nanocatalyst was synthesized. To synthesize this catalyst,... 

    Synthesis of Sr3Fe2O7and Investigation of the Effect of Pr in Sr Site and Co in Fe Site as a Dopant on the Microstructure and its Function as a Solid Oxide Fuel Cathode

    , M.Sc. Thesis Sharif University of Technology Ghani Harzand, Ayda (Author) ; Nemati, Ali (Supervisor) ; Golmohammad, Mohammad (Supervisor)
    Abstract
    Nowday, one of the important goals of researchers is to develop and improve the properties of intermediate tempreture solid oxide fuel cells with range of 600-800˚C. Therefore, choosing the right material as a cathode with good performance in this temperature range is very important. For this purpose, various materials with ionic and electron conductivity mixtures (MIECs) are used, especially oxides with a Radelsden-Paper structure. These oxides are shown by the formula An+1BnC3n+1, which are actually composed of a combination of perovskite layers (ABO3) that are alternately superimposed between two layers of rock salt (AO). In the present study, Sr3Fe2O7 powder with different amounts... 

    Synthesis of β-Amino Ketones Using Titania Based on Solid Acid as A Catalyst

    , M.Sc. Thesis Sharif University of Technology Samet, Masoud (Author) ; Mahmoudi Hashemi, Mohammad (Supervisor)
    Abstract
    Enanthioselective synthesis of biological molecules are so important in synthetic chemistry, and because of their biological activities, β-amino carbonyl compounds have earned so much attention in this area of chemistry. Mannich reaction is a classical method for synthesis of these molecules. The Mannich reaction is a three-component reaction between an enolizable CH-acidic carbonyl compound, an amine, and an aldehyde producing β-amino carbonyl compounds. But acidic or basic difficult circumstances, long reaction time, low yield and enantioselectivity, are the drawbacks of classical methods. In this project, we used titania-based solid acid as an enantioselective catalyst to overcome these... 

    Synthesis of Metal-Organic Framework Nano-Porous Catalyst for Degrading Organic Pollutants (Dyes) in Wastewater

    , M.Sc. Thesis Sharif University of Technology Mirzaieazar, Hedieh (Author) ; Kazemeini, Mohammad (Supervisor) ; Mahmoodi, Niyaz Mohammad (Supervisor)
    Abstract
    Nanoporous metal-organic frameworks are among the new and advanced compounds that have attracted attention of researchers due to their unique properties such as high surface area, high porosity and regular structure. These compounds can catalyze and degrade pollutants. Due to the high consumption of organic compounds, especially textile dyes, the pollution caused by wastewater is increasing in various industries. Disposal of wastewater containing organic pollutants into aquatic environments can alter the natural color, change the taste of water and disturb the life of living organisms. If the dyes are left untreated in aquatic ecosystems, they can remain in the environment for a very long... 

    Microwave-Assisted Coke Resistance and Mesoporous Ni-Co Catalyst in two Steps for Methane Steam Reforming

    , M.Sc. Thesis Sharif University of Technology Etminan, Azita (Author) ; Sadrnezhad, Khatiboleslam (Supervisor)
    Abstract
    Methane steam reforming (MSR) is an assuring reaction using steam to produce H2 as clean energy over a nickel-based catalyst. We synthesized monometallic NiMgAl2O4 and bimetallic NiCoMgAl2O4 catalysts in a two-step combustion method using urea, glycine, and sucrose, as fuel. BET-BJH, XRD, TGA, TPR, FESEM, and EDX-mapping characterized surface area, porosity, morphology, crystalline structure, and metal-support interaction behavior. The products exhibited well-structured, simple MgAl2O4 spinel and NiO without NiAl2O4, in both specimens. The MSR evaluation tests at 750℃ under atmospheric pressure, CH4: H2O feed ratio of 1:1.6 showed the bimetallic catalyst has the highest conversion (99.30%)... 

    Fabrication and Characterization of Nickel-Cobalt Catalyst by One-pot Combustion Synthesis Method for Synthesis Gas Production in Dry Reforming Methane Process

    , M.Sc. Thesis Sharif University of Technology Babaei, Mojtaba (Author) ; Sadrnezhad, Khatiboleslam (Supervisor)
    Abstract
    Dry reforming methane is a process during which two greenhouse gases, CH4 and CO2, using Ni-based catalysts, are altered into valuable H2 and CO gases, which are very useful from an economic and environmental point of view. The main problem with Ni-based catalysts is the formation of carbon in the dry methane reforming, which leads to rapid deactivation of the catalyst. In this research, a 10Ni-5Co/Al2O3 bimetallic catalyst was prepared by one-pot microwave-assisted combustion synthesis with a stoichiometric amount of fuel (urea) and without the use of additives. The catalyst was then calcined for 12 h at 550oC. The structure, chemical composition, particle distribution, and morphology of... 

    Design and Fabrication of Gold Nanocatalyst for Aerobic Oxidation

    , Ph.D. Dissertation Sharif University of Technology Shidpour, Reza (Author) ; Vossoughi, Manoochehr (Supervisor) ; Simchi, Abdolreza (Supervisor)
    Abstract
    Aerobic oxidation plays important role in industrial processes and pollutant remediation. The catalysts accelerating oxidation reaction rate are included thermal (typical) catalysts such as Pt or Au on oxide supports and photocatalysts such as TiO2 or ZnO. Although well-studied Au/TiO2 system have been under deep
    investigations but Au/ZnO system have less investigated because Au/ZnO has low activity relative to Au/ZnO. Gold nanoparticles supported on ZnO nanostructures were prepared through a simple chemical-thermal method and characterized by SEM, TEM, XRD, BET and photo luminescence (PL) spectroscopy. Effect of
    annealing temperature on catalytic activity of these Au/ZnO... 

    Fabrication and Characterization of Patterned Carbon Nanotubes Network on the Silicon Wafer, by Plasma Enhanced Chemical Vapor Deposition

    , M.Sc. Thesis Sharif University of Technology Zaimbashi, Mohsen (Author) ; Rashidian, Bijan (Supervisor)
    Abstract
    Carbon nanotubes, due to their extraordinary electronic and physical properties, have attracted much attention in the last decade. Some of their potential applications are in CNT-field effect transistor, field emission devices, physical and chemical sensors, micro and Nanoelectromechanical systems and Nano antenna. In this thesis, we have first reviewed some features of carbon nanotubes and the advantages of PECVD method compared with thermal CVD. In the second part the role of some of the materials (such as H2/NH3/C2H4) in CNT growth are studied. We created a square pattern on the silicon wafer by photolithography. Afterwards, titanium and nickel deposition is done on the mentioned pattern.... 

    Synthesis and Experimental Study of Bimetallic Nanocatalysts for the Preferential Oxidation of CO in Hydrogen Flow

    , M.Sc. Thesis Sharif University of Technology Zare, Zahra (Author) ; Khorasheh, Farhad (Supervisor) ; Khodadadi, Abbas Ali (Supervisor) ; Mortazavi, Yadollah (Co-Advisor)
    Abstract
    In this investigation, silica-based iron-metal catalyst was synthesized by the Atomic layer deposited (ALD) method with iron-acetylate (Fe(acac)3) as a precursor in different loading dosages. The synthesized catalyst were characterized by nitrogen absorption and excretion (BET), by Field Emission Scanning Electron Microscope (FESEM), X-ray diffraction (XRD), and Temperature-Programmed Reduction (TPR), Fourier-transform infrared spectroscopy (FTIR), Atomic Emission Spectroscopy (ICP) etc.
    The temperature range of 180 to 200 °C was determined for the self-limited chemisorption of Fe(acac)3 on the silica surface as the first and the most important step in a single atomic cycle. Also the...