Loading...
Search for: coating
0.016 seconds
Total 688 records

    Full-core reactor physics analysis for accident tolerant cladding in a VVER-1000 reactor

    , Article Annals of Nuclear Energy ; Volume 155 , 2021 ; 03064549 (ISSN) Safarzadeh, O ; Qarani tamai, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Advanced accident tolerant cladding materials have brought up the potential to delay the deleterious consequences of loos of coolant accidents related to slowing down hydrogen formation from reaction of zirconium with steam in order to minimize the additional heat generation and improve fuel and cladding retention of fission products. The performance improvement offered by these advanced materials may expand the operating envelope of existing light water reactors. This paper examines the neutronic performance of the VVER-1000 light water reactor for the application of accident tolerant cladding in order to realize the endurance of severe accident conditions. This study includes a detailed... 

    The effect of thickness and film homogeneity on the optical and microstructures of the ZrO2 thin films prepared by electron beam evaporation method

    , Article Optical and Quantum Electronics ; Volume 53, Issue 8 , 2021 ; 03068919 (ISSN) Shakoury, R ; Talebani, N ; Zelati, A ; Ţălu, Ş ; Arman, A ; Mirzaei, S ; Jafari, A ; Sharif University of Technology
    Springer  2021
    Abstract
    In this study, ZrO2 coatings with different thicknesses were grown by the electron beam evaporation technique. The crystalline structure was studied by XRD analysis which suggested the tetragonal and monoclinic phases for ZrO2 coatings. Additionally, the film thickness slightly enhanced the crystallinity. The surface morphology and fractal features were analyzed using Scanning Electron Microscopy (SEM). The surface statistical parameters and the fractal geometry were employed to analyze the impact of the coating thickness and homogeneity on the morphology of the films. The statistical processing and fractal dimension revealed variations in the morphology parameters due to the electron beam... 

    In vitro study: Evaluation of mechanical behavior, corrosion resistance, antibacterial properties and biocompatibility of HAp/TiO2/Ag coating on Ti6Al4V/TiO2 substrate

    , Article Surfaces and Interfaces ; Volume 24 , 2021 ; 24680230 (ISSN) Ahmadi, R ; Asadpourchallou, N ; Koozegar Kaleji, B ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Biocompatibility materials such as Ti6Al4V alloy have many medical applications, but their corrosion resistance and antibacterial properties are low, which limits their medical application. Therefore, to improve these challenges in this study, HAp + 15 wt% TiO2 + 5 wt% Ag nanocomposite coating was applied on Ti6Al4V/TiO2 substrate by sol-gel dip method and sintered at 550 °C. The TiO2 layer was pre-formed on the Ti6Al4V substrate using the gel-sol process. The results showed that the nanocomposite was synthesized correctly, and the particle size was in range of 40–90 nm. The evaluation of the coatings developed showed that TiO2/HAp + 15 wt% TiO2 + 5 wt% Ag coating had higher adhesion... 

    In vitro study: Bond strength, electrochemical and biocompatibility evaluations of TiO2/Al2O3 reinforced hydroxyapatite sol–gel coatings on 316L SS

    , Article Surface and Coatings Technology ; Volume 405 , 2021 ; 02578972 (ISSN) Ahmadi, R ; Afshar, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    To improve the biocompatibility and corrosion resistance of 316L SS (Stainless Steel) metal implants, HAp(hydroxyapatite)/TiO2/Al2O3 nanocomposite coating was created using dip sol-gel method sintered at 550 °C. The weight percentage of TiO2+ Al2O3 in these coatings was 20, 30, and 40% wt. In this study, characterization was performed using FTIR (Fourier-Transform Infrared Spectroscopy), XRD, FE-SEM (Field Emission Scanning Electron Microscope), EDS (Energy Dispersive Spectroscopy), DLS (Dynamic Light Scattering), Pull-off, and AFM (Atomic Force Microscopy) analysis. The potentiodynamic polarization and EIS (Electrochemical Impedance Spectroscopy) were performed in the simulated body fluid... 

    In vitro study: Evaluation of mechanical behavior, corrosion resistance, antibacterial properties and biocompatibility of HAp/TiO2/Ag coating on Ti6Al4V/TiO2 substrate

    , Article Surfaces and Interfaces ; Volume 24 , 2021 ; 24680230 (ISSN) Ahmadi, R ; Asadpourchallou, N ; Koozegar Kaleji, B ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Biocompatibility materials such as Ti6Al4V alloy have many medical applications, but their corrosion resistance and antibacterial properties are low, which limits their medical application. Therefore, to improve these challenges in this study, HAp + 15 wt% TiO2 + 5 wt% Ag nanocomposite coating was applied on Ti6Al4V/TiO2 substrate by sol-gel dip method and sintered at 550 °C. The TiO2 layer was pre-formed on the Ti6Al4V substrate using the gel-sol process. The results showed that the nanocomposite was synthesized correctly, and the particle size was in range of 40–90 nm. The evaluation of the coatings developed showed that TiO2/HAp + 15 wt% TiO2 + 5 wt% Ag coating had higher adhesion... 

    In vitro study: Bond strength, electrochemical and biocompatibility evaluations of TiO2/Al2O3 reinforced hydroxyapatite sol–gel coatings on 316L SS

    , Article Surface and Coatings Technology ; Volume 405 , 2021 ; 02578972 (ISSN) Ahmadi, R ; Afshar, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    To improve the biocompatibility and corrosion resistance of 316L SS (Stainless Steel) metal implants, HAp(hydroxyapatite)/TiO2/Al2O3 nanocomposite coating was created using dip sol-gel method sintered at 550 °C. The weight percentage of TiO2+ Al2O3 in these coatings was 20, 30, and 40% wt. In this study, characterization was performed using FTIR (Fourier-Transform Infrared Spectroscopy), XRD, FE-SEM (Field Emission Scanning Electron Microscope), EDS (Energy Dispersive Spectroscopy), DLS (Dynamic Light Scattering), Pull-off, and AFM (Atomic Force Microscopy) analysis. The potentiodynamic polarization and EIS (Electrochemical Impedance Spectroscopy) were performed in the simulated body fluid... 

    Optimization of parameters for the friction stir processing and welding of aa1050 aluminum alloy

    , Article Iranian Journal of Materials Science and Engineering ; Volume 18, Issue 2 , 2021 ; 17350808 (ISSN) Alishavandi, M ; Ebadi, M ; Kokabi, A. H ; Sharif University of Technology
    Iran University of Science and Technology  2021
    Abstract
    Friction-Stir Processing (FSP) was applied on AA1050 Aluminum Alloy (AA) to find the highest mechanical properties among 28 combinations of the rotational and traverse speed (800-2000 rpm and 50-200 mm.min-1) and four different tool probe shapes (threaded, columnar, square and triangle). To this aim, the AA standard sheet went through a single pass of FSP. The 1600 rpm and 100 mm.min-1 with threaded tool probe was chosen as the best combination of rotational and traverse speed. Grain size at the Stirred Zone (SZ) was studied using Optical Microscopy (OM). The results showed that the SZ’s grain size was refined from 30 μm down to about 12 μm due to dynamic recrystallization during FSP. The... 

    Enhancing seebeck coefficient and electrical conductivity of polyaniline/carbon nanotube–coated thermoelectric fabric

    , Article Journal of Industrial Textiles ; 2021 ; 15280837 (ISSN) Amirabad, R ; Ramazani Saadatabadi, A ; Pourjahanbakhsh, M ; Siadati, M. H ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    In this work, flexible thermoelectric fabrics, polyester/yarn fabrics coated with polyaniline/carbon nanotube (PANI/CNT) nanocomposite, were fabricated by sequential processing: (I) polyaniline/carbon nanotube nanocomposites preparation by a one-step in-situ polymerization and (II) dip coating of a mixture solution of CNT-doped PANI on a polyester/yarn fabric. Nanocomposites were synthesized with various CNT content (0.5, 2.5, 5, and 10 wt%) and characterized using different methods. The Seebeck coefficient and electrical conductivity measurements were used to determine their thermoelectric properties. The results revealed significant improvement in both electrical conductivity and the... 

    A single layer deposition of Li-doped mesoporous TiO2beads for low-cost and efficient dye-sensitized solar cells

    , Article New Journal of Chemistry ; Volume 45, Issue 5 , 2021 , Pages 2470-2477 ; 11440546 (ISSN) Golvari, P ; Nouri, E ; Mohsenzadegan, N ; Mohammadi, M. R ; Martinez Chapa, S. O ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    Herein, we report a new strategy for improving the efficiency and reducing the fabrication cost of dye-sensitized solar cells (DSCs) by elimination of the three- or four-fold layer deposition of TiO2. This is performed by replacing a single layer deposition of mesoporous TiO2 beads, with sub-micrometer size, high surface area and tunable pore size, synthesized by a combination of sol-gel and solvothermal methods. Furthermore, superior electronic properties gained by a reduction in electronic trap states are achieved through doping of pristine TiO2 beads with lithium. The beads have a spherical shape with monodispersed texture consisting of anatase-TiO2 nanocrystals and ultra-fine pores. The... 

    Epoxy nanocomposite coatings with enhanced dual active/barrier behavior containing graphene-based carbon hollow spheres as corrosion inhibitor nanoreservoirs

    , Article Corrosion Science ; Volume 185 , 2021 ; 0010938X (ISSN) Haddadi, S. A ; Ramazani Saadatabadi, A ; Mahdavian, M ; Arjmand, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Graphene-based carbon hollow spheres (CHSs) fabrication, doped with 2-mercaptobenzimidazole (MBI) was successfully done in previous work. The active/barrier corrosion protection performance (CPP) of epoxy coatings was evaluated using salt spray test, electrochemical impedance spectroscopy (EIS), and scanning vibrating electrode technique (SVET). Results proved the active/barrier CPP enhancement of epoxy coatings in the presence of 3 wt. % MBI@CHSs. While the presence of MBI and empty CHSs in epoxy coatings did not further improve the active performance. An improvement in the adhesion loss of the epoxy coating, ca. 58 %, was observed in the presence of 3 wt. % MBI@CHSs. © 2021  

    Zinc-doped silica/polyaniline core/shell nanoparticles towards corrosion protection epoxy nanocomposite coatings

    , Article Composites Part B: Engineering ; Volume 212 , 2021 ; 13598368 (ISSN) Haddadi, S. A ; Mehmandar, E ; Jabari, H ; Ramazani Saadatabadi, A ; Mohammadkhani, R ; Yan, N ; Arjmand, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Commercial paints and coatings can serve as a protective barrier for metallic substrates in a corrosive environment. A considerable variety of nanostructures can be embedded in a polymeric coating to achieve both barrier and active protection. This research aims to elucidate the role of polyaniline (PANI) as an active polyelectrolyte modifier for the surface modification of mesoporous silica nanoparticles (MSNs) doped with zinc cations (Zn2+). To characterize the samples, we employed different techniques, including field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), N2 adsorption-desorption, Fourier transform infrared spectroscopy (FTIR), Raman... 

    Enhanced active/barrier corrosion protective properties of epoxy coatings containing eco-friendly green inorganic/organic hybrid pigments based on zinc cations/Ferula Asafoetida leaves

    , Article Journal of Molecular Liquids ; Volume 323 , 2021 ; 01677322 (ISSN) Haddadi, S. A ; Ghaderi, S ; Sadeghi, M ; Gorji, B ; Ahmadijokani, F ; Ramazani Saadatabadi, A ; Mahdavian, M ; Arjmand, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In this study, a novel inorganic/organic hybrid pigment based on zinc cations/Ferula Asafoetida leaves extract (Zn-FALE) was synthesized, and its corrosion protection properties were investigated in a saline solution and an organic coating. Interactions of components between Zn2+ cations and FALE were assessed by thermo-gravimetric analysis (TGA) and ultraviolet-visible (UV–visible) spectroscopy. Corrosion inhibitive performance of FALE and Zn-FALE pigments in the solution phase and coating phase was studied using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). TGA and UV–visible results revealed the proper chelation between inorganic and organic components of... 

    Effective anti-plane moduli of couple stress composites containing elliptic multi-coated nano-fibers with interfacial damage and variational bounds

    , Article International Journal of Damage Mechanics ; Volume 30, Issue 9 , 2021 , Pages 1351-1376 ; 10567895 (ISSN) Hashemian, B ; Shodja, H. M ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    Prediction of the anti-plane moduli of solids consisting of a given distribution of unidirectionally aligned elliptic multi-coated fibers with interfacial damage is the focus of this paper. The fibers and their coating layers may be in the order of nano or micro scales. All the constituent phases of the composite are supposed to be described in terms of couple stress elasticity. Accordingly, the bounds for the overall shear moduli of the aforementioned composites are provided by employing the principles of minimum potential and complementary energies. Certain subtleties associated with the elliptic multi-coated fibers for three cases of pure sliding (completely damaged), imperfect (partially... 

    Design of an effective piezoelectric microcantilever biosensor for rapid detection of COVID-19

    , Article Journal of Medical Engineering and Technology ; Volume 45, Issue 6 , 2021 , Pages 423-433 ; 03091902 (ISSN) Kabir, H ; Merati, M ; Abdekhodaie, M. J ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    Acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also called COVID-19, is one of the most contagious viruses resulting in a progressive pandemic. Since specific antiviral treatments have not been developed yet and its fatal rate is almost high, early and fast detection is critical for controlling the outbreak. In this study, a piezoelectric microcantilever biosensor has been designed for detecting COVID-19 samples directly without requiring preparation steps. The biosensor acts as a transducer and is coated with the related antibody. When the SARS-CoV-2 antigens adsorbed on the microcantilever top surface through their spike proteins, a surface stress due to the mass change would be... 

    Zeolite-based catalytic micromotors for enhanced biological and chemical water remediation

    , Article New Journal of Chemistry ; Volume 44, Issue 44 , 2020 , Pages 19212-19219 Abedini, F ; Madaah Hosseini, H. R ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    Zeolite-based micromotors were developed to eliminate the biological and chemical contamination of water in a fast and efficient way. The motors consist of a silver-exchanged zeolite core and a partial catalytic coating. These porous engines showed rapid killing of Pseudomonas aeruginosa bacteria cells in a very short time, less than 7.5 minutes. The heavy metal uptake of the zeolitic motors during the first 20 minutes of contact was considerably higher than that of zeolite particles by 23% for Pb2+, 19% for Co2+, and 16% for Ni2+. Also, the maximum removal efficiency of the motors (at room temperature and for 6 hours) for Pb2+, Co2+, and Ni2+ was 93%, 87%, and 78%, respectively, higher than... 

    Corrosion resistance evaluation of rebars with various primers and coatings in concrete modified with different additives

    , Article Construction and Building Materials ; Volume 262 , 2020 Afshar, A ; Jahandari, S ; Rasekh, H ; Shariati, M ; Afshar, A ; Shokrgozar, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Corrosion of steel rebars in concrete can reduce the durability of concrete structures in coastal environments. The corrosion rate of these concrete structures can be reduced by using suitable concrete additives and coating on rebars. This paper investigates the corrosion resistance of steel rebars by the addition of pozzolanic materials including fly ash, silica fume, polypropylene fibers, and industrial 2-dimethylaminoethanol (FerroGard 901) inhibitors to the concrete mixture. Three different types of rebars including mild steel rebar st37, and two stainless steel reinforcements, AISI 304 and AISI 316, were used. Various types of primer and coating including alkyd based primer, hot-dip... 

    A novel and cost-effective method for fabrication of a durable superhydrophobic aluminum surface with self-cleaning properties

    , Article Nanotechnology ; Volume 31, Issue 46 , 2020 Afzali, N ; Taghvaei, E ; Moosavi, A ; Sharif University of Technology
    IOP Publishing Ltd  2020
    Abstract
    A hierarchical superhydrophobic surface is prepared via a two-step boiling water immersion process and anodization of the treated aluminum substrate in a novel hydrophobic electrolyte of aluminum nitrate and stearic acid mixture at room temperature. The immersion time in boiling water had a significant influence on the morphology and durability of the sample. A pseudoboehmite coating is created on the aluminum surface during the boiling process, as revealed by the field emission scanning electron microscopy (FE-SEM) and Fourier transform infrared (FTIR) spectrophotometer results. The energy-dispersive x-ray spectroscopy analysis confirmed the formation of hydrophobic coating surface after... 

    In vitro study: bond strength, electrochemical and biocompatibility evaluations of TiO2/Al2O3 reinforced hydroxyapatite sol–gel coatings on 316L SS

    , Article Surface and Coatings Technology ; 2020 Ahmadi, R ; Afshar, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    To improve the biocompatibility and corrosion resistance of 316L SS (Stainless Steel) metal implants, HAp(hydroxyapatite)/TiO2/Al2O3 nanocomposite coating was created using dip sol-gel method sintered at 550 °C. The weight percentage of TiO2+ Al2O3 in these coatings was 20, 30, and 40% wt. In this study, characterization was performed using FTIR (Fourier-Transform Infrared Spectroscopy), XRD, FE-SEM (Field Emission Scanning Electron Microscope), EDS (Energy Dispersive Spectroscopy), DLS (Dynamic Light Scattering), Pull-off, and AFM (Atomic Force Microscopy) analysis. The potentiodynamic polarization and EIS (Electrochemical Impedance Spectroscopy) were performed in the simulated body fluid... 

    Encapsulation of food components and bioactive ingredients and targeted release

    , Article International Journal of Engineering, Transactions A: Basics ; Volume 33, Issue 1 , 2020 , Pages 1-11 Alemzadeh, I ; Hajiabbas, M ; Pakzad, H ; Sajadi Dehkordi, S ; Vossoughi, A ; Sharif University of Technology
    Materials and Energy Research Center  2020
    Abstract
    The potential utilization of encapsulation techniques in food, pharmaceutical and agricultural products preparation, presents a new alternative for complementary technologies such as targeting delivery vehicles and carriers for active food ingredients. Encapsulation could be accomplished by different techniques like: simple or complex coacervation, emulsification technique, phase separation, spray drying, spray chilling or spray cooling, extrusion coating, freeze drying, fluidized-bed coating, liposomal entrapment, centrifugal suspension separation, co-crystallization and molecular inclusion complexation. Encapsulation is a method by which one bioactive material or mixture of materials is... 

    Plasma electrolytic oxidation and corrosion protection of friction stir welded AZ31B magnesium alloy-titanium joints

    , Article Surface and Coatings Technology ; Volume 393 , 2020 Aliasghari, S ; Rogov, A ; Skeldon, P ; Zhou, X ; Yerokhin, A ; Aliabadi, A ; Ghorbani, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Joining of dissimilar light metals by friction stir welding (FSW) is of interest to reduce weight and fuel consumption in the transport sector. Such coupled metals may need protective surface treatments, e.g. against wear or corrosion, for some applications. In this work, the formation of plasma electrolytic oxidation (PEO) coatings in a silicate-based electrolyte for corrosion protection of FSW AZ31B magnesium alloy-titanium joints has been studied. The joints, if unprotected, may be susceptible to severe galvanic corrosion in chloride-containing environments. The coatings were characterized by scanning electron microscopy, energy-dispersive spectroscopy and X-ray diffraction. Mg2SiO4 and...