Loading...
Search for: coatings
0.008 seconds

    Preconcentration and determination of pantoprazole by solid-phase extraction coupled with spectrophotometry using iron oxide nanoparticles modified with cetyltrimethylammonium bromide

    , Article Nano Biomedicine and Engineering ; Volume 7, Issue 3 , 2015 , Pages 102-110 ; 21505578 (ISSN) Sayyahmanesh, M ; Naghian, E ; Sahebi, H ; Asgari, S ; Sharif University of Technology
    Open Access House of Science and Technology  2015
    Abstract
    Solid phase extraction coupled with spectrophotometric detection was applied to trace amounts of Pantoprazole (PP) drug using Cetyltrimethylammonium bromide coated-iron oxide magnetite nanoparticles CTAB@Fe3O4 MNPs. After characterization of the prepared nano-adsorbents, experimental parameters affecting the extraction efficiency of the developed method were optimized. The results obtained showed that this proposed approach is applicable in concentrations ranging from 0.1 to 1.5 μg/ml (R2 = 0.9958) indicating that follows Beer's-Lambert law. The limit of detection and the limit of quantification calculated to be 0.014 and 0.04 μg/ml, respectively. The repeatability of the proposed method was... 

    Diffusion-controlled growth model for electrodeposited cobalt nanowires in highly ordered aluminum oxide membrane

    , Article ECS Transactions, 25 April 2010 through 30 April 2010, Vancouver, BC ; Volume 28, Issue 17 , 2010 , Pages 13-25 ; 19385862 (ISSN) ; 9781607681939 (ISBN) Ghahremaninezhad, A ; Dolati, A ; Sharif University of Technology
    2010
    Abstract
    This work studies the electrochemical growth behavior of cobalt nanowires in highly ordered aluminum oxide membrane. Considering the electrodeposition of metallic nanowires, cation concentration profile in each nano pore was calculated. With assumption of linear diffusion zone on the growing surface of nanowires, a modified Cottrell equation was evaluated. To confirm the model, the Co nanowires were electrodeposited into porous anodic aluminum oxide (AAO) templates and the mechanism of deposition was studied. Comparing the results of model and the experiments has proved the accuracy of the model. Also, it was observed that the growth of the Co nanowires was controlled mainly by diffusion... 

    CVD fabrication of carbon nanotubes on electrodeposited flower-like Fe nanostructures

    , Article Journal of Alloys and Compounds ; Volume 507, Issue 2 , 2010 , Pages 494-497 ; 09258388 (ISSN) Zanganeh, S ; Torabi, M ; Kajbafvala, A ; Zanganeh, N ; Bayati, M. R ; Molaei, R ; Zargar, H.R ; Sadrnezhaad, S. K ; Sharif University of Technology
    Abstract
    Galvanostatic method was used to electrodeposit Fe nanostructures on platinum electrodes as catalysts. Scanning electron microscopy (SEM) revealed flower-like Fe deposits with high surface area. Carbon nanotubes were grown on flower-like Fe nanostructures by chemical vapor deposition. The structure of the synthesized carbon nanotubes was investigated by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and X-ray diffraction. According to X-ray diffraction patterns, Fe was the only detected constituent of the deposited coating. The carbon nanotubes had small wall-thickness and wide hollow core  

    A study of the electrophoretic deposition of Bioglass® suspensions using the Taguchi experimental design approach

    , Article Journal of the European Ceramic Society ; Volume 30, Issue 14 , October , 2010 , Pages 2963-2970 ; 09552219 (ISSN) Pishbin, F ; Simchi, A ; Ryan, M. P ; Boccaccini, A. R ; Sharif University of Technology
    2010
    Abstract
    This paper presents a study of the Taguchi design method to optimise the rate of electrophoretic deposition (EPD) of Bioglass® particles from aqueous suspensions. The effect of Bioglass® concentration, pH and electric field was investigated. An orthogonal array of L16 type with mixed levels of the control factors was utilized. Multivariate analysis of variance (MANOVA) and regression analysis based on the partial least-square method were used to identify the significant factors affecting the deposition rate and its stability during constant-voltage EPD. It was found that the pH of the suspension significantly influences the deposition rate whereas the applied electric field has the smallest... 

    Design and fabrication of sensitive carbon nanotubes/PMMA film for acetone vapour detection

    , Article International Journal of Nanomanufacturing ; Volume 5, Issue 3-4 , 2010 , Pages 268-277 ; 17469392 (ISSN) Ghasempour, R ; Iraji Zad, A ; Hormozi Nezhad, M. R ; Sharif University of Technology
    2010
    Abstract
    We present gas sensing property of carbon nanotubes (CNTs) polymethylmethacrylate (PMMA) composite as the active element for acetone vapour detection at room temperature. The polymeric films were formed by spin coating method on SiO2 substrates. Then they were activated by dropping the CNTs suspension in acetone on the PMMA films. The CNT/PMMA films were characterised by SEM, TEM and Raman spectroscopy. Variation of film's electrical resistance after exposure polar and non-polar gases is utilised as the principle of gas sensing. The experimental results showed that the samples present chemical selectivity and reversibility toward polar gases especially acetone vapour  

    Microstructural and electrical properties of varistors prepared from coated ZnO nanopowders

    , Article Journal of Materials Science: Materials in Electronics ; Volume 21, Issue 6 , June , 2010 , Pages 571-577 ; 09574522 (ISSN) Shojaee, S. A ; Maleki Shahraki, M ; Faghihi Sani, M. A ; Nemati, A ; Yousefi, A ; Sharif University of Technology
    2010
    Abstract
    This paper describes a solution-based technique for fabrication of varistor grade composite nanopowders. The method consists of coating major varistor dopants on the surface of the ZnO nanoparticles. As a result, a homogenous mixture of dopants and ZnO nanoparticles will be achieved. TEM results indicated that a composite layer of dopants with the average particle size of 9 nm on the surface of ZnO nanoparticles has been successfully prepared. Sintering of the coated powders was performed in temperatures as low as 850 °C and final specimens with average particle size of 900 nm and density of 98.5% were achieved. In comparison to conventional mixing, varistors prepared from coated nanopowders... 

    Surface defects characterization with frequency and force modulation atomic force microscopy using molecular dynamics simulations

    , Article Current Applied Physics ; Volume 10, Issue 2 , 2010 , Pages 583-591 ; 15671739 (ISSN) Nejat Pishkenari, H ; Meghdari, A ; Sharif University of Technology
    2010
    Abstract
    This paper is devoted to the characterization of the surface defects using a recently developed AFM technique called frequency and force modulation AFM (FFM-AFM). The simulated system includes a recently developed gold coated AFM probe which interacts with a sample including single-atom vacancy and impurities. In order to examine the behavior of the above system on different transition metals, the molecular dynamics (MD) simulation with Sutton-Chen (SC) inter-atomic potential is used. In this study, an online imaging simulation of the probe and sample is performed, and the effects of the horizontal scan speed, the effective frequency set-point, the cantilever stiffness, the tip-sample rest... 

    Fracture behavior dependence on load-bearing capacity of filler in nano- and microcomposites of polypropylene containing calcium carbonate

    , Article Materials and Design ; Volume 31, Issue 2 , 2010 , Pages 802-807 ; 02641275 (ISSN) Afshar, A ; Massoumi, I ; Khosh, R. L ; Bagheri, R ; Sharif University of Technology
    2010
    Abstract
    The fracture toughness and deformation mechanism of PP/CaCO3 (15 wt.%) composites were studied and related to load-bearing capacity of the particles. To alter the load-bearing capacity of the particles, different particle sizes (0.07-7 μm) with or without stearic acid coating were incorporated. The fracture toughness of the composites was determined using J-Integral method and the deformation mechanism was studied by transmission optical microscopy of the crack tip damage zone. It was observed that the load-bearing capacity of the particles decreased by reduction of particle size and application of coating. A linear relationship between normalized fracture toughness and inverse of... 

    Pd doped WO3 films prepared by sol-gel process for hydrogen sensing

    , Article International Journal of Hydrogen Energy ; Volume 35, Issue 2 , 2010 , Pages 854-860 ; 03603199 (ISSN) Fardindoost, S ; Iraji zad, A ; Rahimi, F ; Ghasempour, R ; Sharif University of Technology
    Abstract
    The sol gel method was employed to prepare peroxopolytungstic acid (P-PTA). Palladium chloride salt was dissolved in the sol with different Pd:W molar ratios and coated on Al2O3 substrates by spin coating method. XRD and XPS techniques were used to analyze the crystal structure and chemical composition of the films before and after heat treatment at 500 °C. We observed that Pd can modify the growth kinetic of tungsten trioxide nanoparticles by reducing the crystallite size and as a result can improve hydrogen sensitivity. Resistance-sensing measurements indicated sensitivity of about 2.5 × 104 at room temperature in hydrogen concentration of 0.1% in air. Considering all sensing parameters,... 

    Specific targeting delivery to MUC1 overexpressing tumors by albumin-chitosan nanoparticles conjugated to DNA aptamer

    , Article International Journal of Pharmaceutics ; Volume 515, Issue 1-2 , 2016 , Pages 607-615 ; 03785173 (ISSN) Esfandyari Manesh, M ; Mohammadi, A ; Atyabi, F ; Nabavi, S. M ; Ebrahimi, S. M ; Shahmoradi, E ; Shiri Varnamkhasti, B ; Ghahremani, M. H ; Dinarvand, R ; Sharif University of Technology
    Elsevier B.V  2016
    Abstract
    Chitosan-coated human serum albumin nanoparticles were functionalized by MUC1 aptamer to obtain a selective drug carrier toward cancers overexpressing MUC1. The negative charges of albumin nanoparticles were shifted to positive charges by surface modification with chitosan, and MUC1 was conjugated through an acrylate spacer. The cytotoxicity of targeted nanoparticles was significantly more than non-aptamer nanoparticles, and also the chitosan-coated nanoparticles had more cytotoxic effects than the negatively charged albumin nanoparticles. The IC50 of targeted nanoparticles was 28 and 26% of free paclitaxel in MCF7 and T47D cells at 48 h, respectively. Confocal laser scanning electron... 

    Hydroxyapatite based and anodic titania nanotube biocomposite coatings: fabrication, characterization and electrochemical behavior

    , Article Surface and Coatings Technology ; Volume 287 , 2016 , Pages 67-75 ; 02578972 (ISSN) Ahmadi, S ; Mohammadi, I ; Sadrnezhaad, S. K ; Sharif University of Technology
    Elsevier  2016
    Abstract
    The main challenges of biological implants are suitable strength, adhesion, biocompatibility and corrosion resistance. This paper discusses fabrication, characterization and electrochemical investigation of anodized Ti6Al4V without and with a hydroxyapatite (HA) layer, HA/TiO2 nanoparticles (NPs) and HA/TiO2 nanotubes (HA/anodized). X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS) were used to characterize and compare properties of different samples. Dense HA with uniform distribution and 12.8 ± 2 MPa adhesive strength enhanced to 19.2 ± 4 MPa by the addition of TiO2 nanoparticles and enhanced to 23.1 ± 4 MPa by the... 

    Copper immobilized onto polymer-coated magnetic nanoparticles as recoverable catalyst for 'click' reaction

    , Article Applied Organometallic Chemistry ; 2016 ; 02682605 (ISSN) Banan, A ; Bayat, A ; Valizadeh, H ; Sharif University of Technology
    John Wiley and Sons Ltd  2016
    Abstract
    Copper supported on polymer-coated magnetic nanoparticles was designed and synthesized as a separable heterogeneous catalyst. The catalyst was fully characterized using several techniques such as Fourier transform infrared and energy-dispersive X-ray spectroscopies, scanning and transmission electron microscopies, X-ray diffraction, vibrating sample magnetometry, thermogravimetric analysis and inductively coupled plasma atomic emission spectrometry. All results showed that copper was successfully supported on the polymer-coated magnetic nanoparticles. Also, results showed that the synthesized material can be used as an efficient catalyst for the preparation of a series of 1,4-disubstituted... 

    Deposition of metallic molybdenum thin films on 304L steel substrate by SUT-PF

    , Article Surface and Coatings Technology ; 2016 ; 02578972 (ISSN) Hosseinzadeh, A ; Nazmabadi, M ; Vosoughi, N ; Sharif University of Technology
    Elsevier B. V 
    Abstract
    The present research work aims to employ plasma focus in order to deposit molybdenum (Mo) on the 304 stainless steel substrate. The processing parameters were shot numbers as well as the distance of substrate from the anode tip. Stereo, atom force microscopy (AFM) and field emission-scanning electron microscopy (FE-SEM) equipped with energy dispersive X-ray spectroscopy (EDS) were used to study the deposited coatings. Microhardness measurements were also performed on the coatings. Results indicated that the plasma focus can be successfully applied to deposit Mo anode on the stainless steel substrate. The coatings contained discrete pores with sizes varying by processing parameters. The... 

    Application of a dual functional luminescent layer to enhance the light harvesting efficiency of dye sensitized solar cell

    , Article Materials Letters ; 2016 ; 0167577X (ISSN) Hosseini, Z ; Taghavinia, N ; Diau, E. W. G
    Elsevier B.V  2016
    Abstract
    A luminescent coating of CaAlSiN3:Eu2+ particles applied on photoanode (TiO2) layer of SQ1 sensitized solar cell by doctor blading the paste of phosphor particles. The luminescent layer acted as a dual functional layer and enhanced the short circuit current density (JSC) by 64% via both scattering effect and downshifting of the photons in 400-600nm spectral range to photons in 600-800nm spectral range. Considerable relative enhancement in incident photon to current conversion efficiency (IPCE) up to 350% in 400-600nm spectral range proves the down shifting effect as the dominant factor for the improved performance of dye sensitized solar cell (DSSC). © 2016 Elsevier B.V  

    Novel printed body worn sensor for measuring the human movement orientation

    , Article Sensor Review ; Volume 36, Issue 3 , 2016 , Pages 321-331 ; 02602288 (ISSN) Mokhlespour Esfahani, M. I ; Taghinedjad, S ; Mottaghitalab, V ; Narimani, R ; Parnianpour, M ; Sharif University of Technology
    Emerald Group Publishing Ltd  2016
    Abstract
    Purpose - the purpose of this study is the measuring of the human movement using printed wearable sensor. Human movement measurement is one of the usages for wearable sensors. This technology assists the researchers to collect data from the daily activities of individuals. In other words, the kinematics data of human motion will be extracted from this data and implemented in biomechanical aspects. Design/methodology/approach - This study presents an innovative printed wearable sensor which can be used for measuring human movement orientations. In this paper, the manufacturing process, implementation, measurement setup and calibration procedure of this new sensor will be explained, and the... 

    Nanotechnology in diagnosis and treatment of coronary artery disease

    , Article Nanomedicine ; Volume 11, Issue 5 , 2016 , Pages 513-530 ; 17435889 (ISSN) Karimi, M ; Zare, H ; Bakhshian Nik, A ; Yazdani, N ; Hamrang, M ; Mohamed, E ; Sahandi Zangabad, P ; Moosavi Basri, S. M ; Bakhtiari, L ; Hamblin, M. R ; Sharif University of Technology
    Future Medicine Ltd 
    Abstract
    Nanotechnology could provide a new complementary approach to treat coronary artery disease (CAD) which is now one of the biggest killers in the Western world. The course of events, which leads to atherosclerosis and CAD, involves many biological factors and cellular disease processes which may be mitigated by therapeutic methods enhanced by nanotechnology. Nanoparticles can provide a variety of delivery systems for cargoes such as drugs and genes that can address many problems within the arteries. In order to improve the performance of current stents, nanotechnology provides different nanomaterial coatings, in addition to controlled-release nanocarriers, to prevent in-stent restenosis.... 

    Cytotoxicity and cell cycle effects of bare and poly(vinyl alcohol)-coated iron oxide nanoparticles in mouse fibroblasts

    , Article Advanced Engineering Materials ; Volume 11, Issue 12 , 2009 , Pages B243-B250 ; 14381656 (ISSN) Mahmoudi, M ; Simchi, A ; Vali, H ; Imani, M ; Shokrgozar, M. A ; Azadmanesh, K ; Azari, F ; Sharif University of Technology
    Abstract
    Super-paramagnetic iron oxide nanoparticles (SPIONs) are recognized as powerful biocompatible materials for use in various biomedical applications, such as drug delivery, magnetic-resonance imaging, cell/protein separation, hyperthermia and transfection. This study investigates the impact of high concentrations of SPIONs on cytotoxicity and cell-cycle effects. The interactions of surfacesaturated (via interactions with cell medium) bare SPIONs and those coated with poly(vinyl alcohol) (PVA) with adhesive mouse fibroblast cells (L929) are investigated using an MTT assay. The two SPION formulations are synthesized using a co-precipitation method. The bare and coated magnetic nanoparticles with... 

    In vitro biological outcome of laser application for modification or processing of titanium dental implants

    , Article Lasers in Medical Science ; Volume 32, Issue 5 , 2017 , Pages 1197-1206 ; 02688921 (ISSN) Hindy, A ; Farahmand, F ; Tabatabaei, F. S ; Sharif University of Technology
    Abstract
    There are numerous functions for laser in modern implant dentistry including surface treatment, surface coating, and implant manufacturing. As laser application may potentially improve osseointegration of dental implants, we systematically reviewed the literature for in vitro biological responses to laser-modified or processed titanium dental implants. The literature was searched in PubMed, ISI Web, and Scopus, using keywords “titanium dental implants,” “laser,” “biocompatibility,” and their synonyms. After screening the 136 references obtained, 28 articles met the inclusion criteria. We found that Nd:YAG laser was the most commonly used lasers in the treatment or processing of titanium... 

    Copper immobilized onto polymer-coated magnetic nanoparticles as recoverable catalyst for ‘click’ reaction

    , Article Applied Organometallic Chemistry ; Volume 31, Issue 5 , 2017 ; 02682605 (ISSN) Banan, A ; Bayat, A ; Valizadeh, H ; Sharif University of Technology
    Abstract
    Copper supported on polymer-coated magnetic nanoparticles was designed and synthesized as a separable heterogeneous catalyst. The catalyst was fully characterized using several techniques such as Fourier transform infrared and energy-dispersive X-ray spectroscopies, scanning and transmission electron microscopies, X-ray diffraction, vibrating sample magnetometry, thermogravimetric analysis and inductively coupled plasma atomic emission spectrometry. All results showed that copper was successfully supported on the polymer-coated magnetic nanoparticles. Also, results showed that the synthesized material can be used as an efficient catalyst for the preparation of a series of 1,4-disubstituted... 

    Structural and corrosion characterization of hydroxyapatite/zirconium nitride-coated AZ91 magnesium alloy by ion beam sputtering

    , Article Applied Surface Science ; Volume 401 , 2017 , Pages 172-180 ; 01694332 (ISSN) Kiahosseini, S. R ; Afshar, A ; Mojtahedzadeh Larijani, M ; Yousefpour, M ; Sharif University of Technology
    Abstract
    The adhesion of hydroxyapatite (HA) as a coating for the AZ91 magnesium alloy substrate can be improved by using the sputtering method and an intermediate layer, such as ZrN. In this study, HA coatings were applied on ZrN intermediate layers at a temperature of 300 °C for 180, 240, 300, 360, and 420 min by ion beam sputtering. A profilometer device was used to study the HA coating thickness, which changed from 2 μm for the 180-min deposition to 4.7 μm for 420-min deposition. The grazing incidence X-ray diffraction analysis method and the Williamson–Hall analysis were used for structural investigation. As the deposition time increased, the crystalline size increased from 50 nm to 690 nm....