Loading...
Search for: coatings
0.011 seconds

    Investigation of interfacial and mechanical properties of alumina-coated steel fiber reinforced geopolymer composites

    , Article Construction and Building Materials ; Volume 288 , 2021 ; 09500618 (ISSN) Riahi, S ; Nemati, A ; Khodabandeh, A. R ; Baghshahi, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this study, alumina coated steel reinforced geopolymer composites were successfully fabricated and their interfacial and mechanical properties were investigated. The fiber–matrix interface characteristics were assessed using single-fiber push-out and water contact angle experiments as well as SEM-EDS analysis. Finally, the role of alumina coating on the compressive, flexural and toughness of the geopolymer composites was investigated. The morphological studies revealed that alumina coating on steel can chemically bonded and microstructurally integrated with the surrounding matrix. The push-out test showed that the interfacial shear strength was increased approximately 150% in composites... 

    Full-core reactor physics analysis for accident tolerant cladding in a VVER-1000 reactor

    , Article Annals of Nuclear Energy ; Volume 155 , 2021 ; 03064549 (ISSN) Safarzadeh, O ; Qarani tamai, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Advanced accident tolerant cladding materials have brought up the potential to delay the deleterious consequences of loos of coolant accidents related to slowing down hydrogen formation from reaction of zirconium with steam in order to minimize the additional heat generation and improve fuel and cladding retention of fission products. The performance improvement offered by these advanced materials may expand the operating envelope of existing light water reactors. This paper examines the neutronic performance of the VVER-1000 light water reactor for the application of accident tolerant cladding in order to realize the endurance of severe accident conditions. This study includes a detailed... 

    The effect of thickness and film homogeneity on the optical and microstructures of the ZrO2 thin films prepared by electron beam evaporation method

    , Article Optical and Quantum Electronics ; Volume 53, Issue 8 , 2021 ; 03068919 (ISSN) Shakoury, R ; Talebani, N ; Zelati, A ; Ţălu, Ş ; Arman, A ; Mirzaei, S ; Jafari, A ; Sharif University of Technology
    Springer  2021
    Abstract
    In this study, ZrO2 coatings with different thicknesses were grown by the electron beam evaporation technique. The crystalline structure was studied by XRD analysis which suggested the tetragonal and monoclinic phases for ZrO2 coatings. Additionally, the film thickness slightly enhanced the crystallinity. The surface morphology and fractal features were analyzed using Scanning Electron Microscopy (SEM). The surface statistical parameters and the fractal geometry were employed to analyze the impact of the coating thickness and homogeneity on the morphology of the films. The statistical processing and fractal dimension revealed variations in the morphology parameters due to the electron beam... 

    In vitro study: Evaluation of mechanical behavior, corrosion resistance, antibacterial properties and biocompatibility of HAp/TiO2/Ag coating on Ti6Al4V/TiO2 substrate

    , Article Surfaces and Interfaces ; Volume 24 , 2021 ; 24680230 (ISSN) Ahmadi, R ; Asadpourchallou, N ; Koozegar Kaleji, B ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Biocompatibility materials such as Ti6Al4V alloy have many medical applications, but their corrosion resistance and antibacterial properties are low, which limits their medical application. Therefore, to improve these challenges in this study, HAp + 15 wt% TiO2 + 5 wt% Ag nanocomposite coating was applied on Ti6Al4V/TiO2 substrate by sol-gel dip method and sintered at 550 °C. The TiO2 layer was pre-formed on the Ti6Al4V substrate using the gel-sol process. The results showed that the nanocomposite was synthesized correctly, and the particle size was in range of 40–90 nm. The evaluation of the coatings developed showed that TiO2/HAp + 15 wt% TiO2 + 5 wt% Ag coating had higher adhesion... 

    In vitro study: Bond strength, electrochemical and biocompatibility evaluations of TiO2/Al2O3 reinforced hydroxyapatite sol–gel coatings on 316L SS

    , Article Surface and Coatings Technology ; Volume 405 , 2021 ; 02578972 (ISSN) Ahmadi, R ; Afshar, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    To improve the biocompatibility and corrosion resistance of 316L SS (Stainless Steel) metal implants, HAp(hydroxyapatite)/TiO2/Al2O3 nanocomposite coating was created using dip sol-gel method sintered at 550 °C. The weight percentage of TiO2+ Al2O3 in these coatings was 20, 30, and 40% wt. In this study, characterization was performed using FTIR (Fourier-Transform Infrared Spectroscopy), XRD, FE-SEM (Field Emission Scanning Electron Microscope), EDS (Energy Dispersive Spectroscopy), DLS (Dynamic Light Scattering), Pull-off, and AFM (Atomic Force Microscopy) analysis. The potentiodynamic polarization and EIS (Electrochemical Impedance Spectroscopy) were performed in the simulated body fluid... 

    In vitro study: Evaluation of mechanical behavior, corrosion resistance, antibacterial properties and biocompatibility of HAp/TiO2/Ag coating on Ti6Al4V/TiO2 substrate

    , Article Surfaces and Interfaces ; Volume 24 , 2021 ; 24680230 (ISSN) Ahmadi, R ; Asadpourchallou, N ; Koozegar Kaleji, B ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Biocompatibility materials such as Ti6Al4V alloy have many medical applications, but their corrosion resistance and antibacterial properties are low, which limits their medical application. Therefore, to improve these challenges in this study, HAp + 15 wt% TiO2 + 5 wt% Ag nanocomposite coating was applied on Ti6Al4V/TiO2 substrate by sol-gel dip method and sintered at 550 °C. The TiO2 layer was pre-formed on the Ti6Al4V substrate using the gel-sol process. The results showed that the nanocomposite was synthesized correctly, and the particle size was in range of 40–90 nm. The evaluation of the coatings developed showed that TiO2/HAp + 15 wt% TiO2 + 5 wt% Ag coating had higher adhesion... 

    In vitro study: Bond strength, electrochemical and biocompatibility evaluations of TiO2/Al2O3 reinforced hydroxyapatite sol–gel coatings on 316L SS

    , Article Surface and Coatings Technology ; Volume 405 , 2021 ; 02578972 (ISSN) Ahmadi, R ; Afshar, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    To improve the biocompatibility and corrosion resistance of 316L SS (Stainless Steel) metal implants, HAp(hydroxyapatite)/TiO2/Al2O3 nanocomposite coating was created using dip sol-gel method sintered at 550 °C. The weight percentage of TiO2+ Al2O3 in these coatings was 20, 30, and 40% wt. In this study, characterization was performed using FTIR (Fourier-Transform Infrared Spectroscopy), XRD, FE-SEM (Field Emission Scanning Electron Microscope), EDS (Energy Dispersive Spectroscopy), DLS (Dynamic Light Scattering), Pull-off, and AFM (Atomic Force Microscopy) analysis. The potentiodynamic polarization and EIS (Electrochemical Impedance Spectroscopy) were performed in the simulated body fluid... 

    Optimization of parameters for the friction stir processing and welding of aa1050 aluminum alloy

    , Article Iranian Journal of Materials Science and Engineering ; Volume 18, Issue 2 , 2021 ; 17350808 (ISSN) Alishavandi, M ; Ebadi, M ; Kokabi, A. H ; Sharif University of Technology
    Iran University of Science and Technology  2021
    Abstract
    Friction-Stir Processing (FSP) was applied on AA1050 Aluminum Alloy (AA) to find the highest mechanical properties among 28 combinations of the rotational and traverse speed (800-2000 rpm and 50-200 mm.min-1) and four different tool probe shapes (threaded, columnar, square and triangle). To this aim, the AA standard sheet went through a single pass of FSP. The 1600 rpm and 100 mm.min-1 with threaded tool probe was chosen as the best combination of rotational and traverse speed. Grain size at the Stirred Zone (SZ) was studied using Optical Microscopy (OM). The results showed that the SZ’s grain size was refined from 30 μm down to about 12 μm due to dynamic recrystallization during FSP. The... 

    Enhancing seebeck coefficient and electrical conductivity of polyaniline/carbon nanotube–coated thermoelectric fabric

    , Article Journal of Industrial Textiles ; 2021 ; 15280837 (ISSN) Amirabad, R ; Ramazani Saadatabadi, A ; Pourjahanbakhsh, M ; Siadati, M. H ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    In this work, flexible thermoelectric fabrics, polyester/yarn fabrics coated with polyaniline/carbon nanotube (PANI/CNT) nanocomposite, were fabricated by sequential processing: (I) polyaniline/carbon nanotube nanocomposites preparation by a one-step in-situ polymerization and (II) dip coating of a mixture solution of CNT-doped PANI on a polyester/yarn fabric. Nanocomposites were synthesized with various CNT content (0.5, 2.5, 5, and 10 wt%) and characterized using different methods. The Seebeck coefficient and electrical conductivity measurements were used to determine their thermoelectric properties. The results revealed significant improvement in both electrical conductivity and the... 

    A single layer deposition of Li-doped mesoporous TiO2beads for low-cost and efficient dye-sensitized solar cells

    , Article New Journal of Chemistry ; Volume 45, Issue 5 , 2021 , Pages 2470-2477 ; 11440546 (ISSN) Golvari, P ; Nouri, E ; Mohsenzadegan, N ; Mohammadi, M. R ; Martinez Chapa, S. O ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    Herein, we report a new strategy for improving the efficiency and reducing the fabrication cost of dye-sensitized solar cells (DSCs) by elimination of the three- or four-fold layer deposition of TiO2. This is performed by replacing a single layer deposition of mesoporous TiO2 beads, with sub-micrometer size, high surface area and tunable pore size, synthesized by a combination of sol-gel and solvothermal methods. Furthermore, superior electronic properties gained by a reduction in electronic trap states are achieved through doping of pristine TiO2 beads with lithium. The beads have a spherical shape with monodispersed texture consisting of anatase-TiO2 nanocrystals and ultra-fine pores. The... 

    Epoxy nanocomposite coatings with enhanced dual active/barrier behavior containing graphene-based carbon hollow spheres as corrosion inhibitor nanoreservoirs

    , Article Corrosion Science ; Volume 185 , 2021 ; 0010938X (ISSN) Haddadi, S. A ; Ramazani Saadatabadi, A ; Mahdavian, M ; Arjmand, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Graphene-based carbon hollow spheres (CHSs) fabrication, doped with 2-mercaptobenzimidazole (MBI) was successfully done in previous work. The active/barrier corrosion protection performance (CPP) of epoxy coatings was evaluated using salt spray test, electrochemical impedance spectroscopy (EIS), and scanning vibrating electrode technique (SVET). Results proved the active/barrier CPP enhancement of epoxy coatings in the presence of 3 wt. % MBI@CHSs. While the presence of MBI and empty CHSs in epoxy coatings did not further improve the active performance. An improvement in the adhesion loss of the epoxy coating, ca. 58 %, was observed in the presence of 3 wt. % MBI@CHSs. © 2021  

    Zinc-doped silica/polyaniline core/shell nanoparticles towards corrosion protection epoxy nanocomposite coatings

    , Article Composites Part B: Engineering ; Volume 212 , 2021 ; 13598368 (ISSN) Haddadi, S. A ; Mehmandar, E ; Jabari, H ; Ramazani Saadatabadi, A ; Mohammadkhani, R ; Yan, N ; Arjmand, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Commercial paints and coatings can serve as a protective barrier for metallic substrates in a corrosive environment. A considerable variety of nanostructures can be embedded in a polymeric coating to achieve both barrier and active protection. This research aims to elucidate the role of polyaniline (PANI) as an active polyelectrolyte modifier for the surface modification of mesoporous silica nanoparticles (MSNs) doped with zinc cations (Zn2+). To characterize the samples, we employed different techniques, including field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), N2 adsorption-desorption, Fourier transform infrared spectroscopy (FTIR), Raman... 

    Enhanced active/barrier corrosion protective properties of epoxy coatings containing eco-friendly green inorganic/organic hybrid pigments based on zinc cations/Ferula Asafoetida leaves

    , Article Journal of Molecular Liquids ; Volume 323 , 2021 ; 01677322 (ISSN) Haddadi, S. A ; Ghaderi, S ; Sadeghi, M ; Gorji, B ; Ahmadijokani, F ; Ramazani Saadatabadi, A ; Mahdavian, M ; Arjmand, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In this study, a novel inorganic/organic hybrid pigment based on zinc cations/Ferula Asafoetida leaves extract (Zn-FALE) was synthesized, and its corrosion protection properties were investigated in a saline solution and an organic coating. Interactions of components between Zn2+ cations and FALE were assessed by thermo-gravimetric analysis (TGA) and ultraviolet-visible (UV–visible) spectroscopy. Corrosion inhibitive performance of FALE and Zn-FALE pigments in the solution phase and coating phase was studied using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). TGA and UV–visible results revealed the proper chelation between inorganic and organic components of... 

    Effective anti-plane moduli of couple stress composites containing elliptic multi-coated nano-fibers with interfacial damage and variational bounds

    , Article International Journal of Damage Mechanics ; Volume 30, Issue 9 , 2021 , Pages 1351-1376 ; 10567895 (ISSN) Hashemian, B ; Shodja, H. M ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    Prediction of the anti-plane moduli of solids consisting of a given distribution of unidirectionally aligned elliptic multi-coated fibers with interfacial damage is the focus of this paper. The fibers and their coating layers may be in the order of nano or micro scales. All the constituent phases of the composite are supposed to be described in terms of couple stress elasticity. Accordingly, the bounds for the overall shear moduli of the aforementioned composites are provided by employing the principles of minimum potential and complementary energies. Certain subtleties associated with the elliptic multi-coated fibers for three cases of pure sliding (completely damaged), imperfect (partially... 

    Design of an effective piezoelectric microcantilever biosensor for rapid detection of COVID-19

    , Article Journal of Medical Engineering and Technology ; Volume 45, Issue 6 , 2021 , Pages 423-433 ; 03091902 (ISSN) Kabir, H ; Merati, M ; Abdekhodaie, M. J ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    Acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also called COVID-19, is one of the most contagious viruses resulting in a progressive pandemic. Since specific antiviral treatments have not been developed yet and its fatal rate is almost high, early and fast detection is critical for controlling the outbreak. In this study, a piezoelectric microcantilever biosensor has been designed for detecting COVID-19 samples directly without requiring preparation steps. The biosensor acts as a transducer and is coated with the related antibody. When the SARS-CoV-2 antigens adsorbed on the microcantilever top surface through their spike proteins, a surface stress due to the mass change would be... 

    Adaptive modeling of powder deposition for control and monitoring application

    , Article DETC2005: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach, CA, 24 September 2005 through 28 September 2005 ; Volume 1 A , 2005 , Pages 755-760 ; 0791847381 (ISBN) Durali, M ; Fathi, A ; Khajepour, A ; Toyserkani, E ; Sharif University of Technology
    2005
    Abstract
    Laser Powder Deposition technique is an advanced production method with many applications. Despite this fact, reliable and accurate control schemes have not yet fully developed for this method. This article presents method for in time identification of the process for modeling and adaptation of proper control strategy. ARMAX structure is chosen for system model. Recursive least square method and Kalman Filter methods are adopted for system identification, and their performance are compared. Experimental data was used for system identification, and proper filtering schemes are devised here for noise elimination and increased estimation results. It was concluded that although both methods... 

    Performance and stability enhancement of NASA Rotor 37 applying abradable coating

    , Article ASME Turbo Expo 2005 - Gas Turbie Technology: Focus for the Future, Reno-Tahoe, NV, 6 June 2005 through 9 June 2005 ; Volume 6 PART A , 2005 , Pages 93-102 Beheshti, B. H ; Farhanieh, B ; Ghorbanian, K ; Teixeira, J. A ; Ivey, P. C ; ASME International Gas Turbine Institute ; Sharif University of Technology
    2005
    Abstract
    Improvements in sealing mechanism between the rotating and the stationary parts of a rurbomachine can extensively reduce the endwall leakage flow. In this regard, abradable seals are incorporated into compressor and turbine blade-tip region. In a gas turbine, equipped with abradable seals, tip of the rotor blade is designed to cut into the material coating of the casing and to form a close fitted circumferential groove for the movement of the blade tip. As a result, the resistance to the leakage flow in the tip gap region increases due to smaller tip clearances (available without any rub-induced damages). Minimizing the tip clearance size can lead to an increase in performance and stability.... 

    Sol-gel-based solid-phase microextraction and gas chromatography-mass spectrometry determination of dextromethorphan and dextrorphan in human plasma

    , Article Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences ; Volume 818, Issue 2 , 2005 , Pages 147-157 ; 15700232 (ISSN) Bagheri, H ; Eshaghi, A ; Rouini, M. R ; Sharif University of Technology
    2005
    Abstract
    A novel solid-phase microextraction (SPME) method was developed for isolation of dextromethorphan (DM) and its main metabolite dextrorphan (DP) from human plasma followed by GC-MS determination. Three different polymers, poly(dimethylsiloxane) (PDMS), poly(ethylenepropyleneglycol) monobutyl ether (Ucon) and polyethylene glycol (PEG) were synthesized as coated fibers using sol-gel methodologies. DP was converted to its acetyl-derivative prior to extraction and subsequent determination. The porosity of coated fibers was examined by SEM technique. Effects of different parameters such as fiber coating type, extraction mode, agitation method, sample volume, extraction time, and desorption... 

    An electropolymerized aniline-based fiber coating for solid phase microextraction of phenols from water

    , Article Analytica Chimica Acta ; Volume 532, Issue 1 , 2005 , Pages 89-95 ; 00032670 (ISSN) Bagheri, H ; Mir, A ; Babanezhad, E ; Sharif University of Technology
    2005
    Abstract
    An aniline-based polymer was electrochemically prepared and applied as a new fiber coating for solid phase microextraction (SPME) of some priority phenols from water samples. The polyaniline (PANI) film was directly electrodeposited on the platinum wire surface in sulfuric acid solution using cyclic voltammetry (CV) technique. The efficiency of new coating was investigated using a laboratory-made SPME device and gas chromatography with flame ionization detection for the extraction of some phenols from the headspace of aqueous samples. The scanning electron microscopy (SEM) images showed the homogeneity and the porous surface structure of the film. The results obtained proved the ability of... 

    Overall behavior of composites with periodic multi-inhomogeneities

    , Article Mechanics of Materials ; Volume 37, Issue 2-3 SPEC. ISS , 2005 , Pages 343-353 ; 01676636 (ISSN) Shodja, H. M ; Roumi, F ; Sharif University of Technology
    2005
    Abstract
    When applying the equivalent inclusion method (EIM) to a composite material with non-dilute distribution of reinforcement particles, due to the complex interaction between the particles, the homogenizing eigenstrain field will in general be highly nonlinear. The interaction becomes more complex, when the reinforcements are multi-phase particles, i.e., the core inhomogeneity is surrounded by many layers of coatings. In this paper, a treatment for an accurate determination of the distribution of homogenizing eigenstrain fields corresponding to composites with non-dilute periodic distribution of multi-phase reinforcement particles is given. The proposed method is applicable to problems, where...