Loading...
Search for: complexation
0.019 seconds
Total 1201 records

    Generalized meet in the middle cryptanalysis of block ciphers with an automated search algorithm

    , Article IEEE Access ; Volume 8 , 2020 , Pages 2284-2301 Ahmadi, S ; Aref, M. R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Meet in the middle (MITM) attack is one of the most important and applicable methods for cryptanalysis of block ciphers. In this paper, a more generalized method for MITM attack is considered. For this purpose, a notion, namely cut-set, is utilized by which several numbers of MITM attacks can be performed. However, manual investigation on these cases is time-consuming and sometimes not error-free. Therefore, a new search algorithm is also provided to obtain proper attacks in a timely manner. For examination, this new search algorithm, which could make an automated attack along with some certain ideas, is applied on HIGHT, Piccolo-128, CRAFT and AES-128 block ciphers. The least time... 

    Delocalization of phonons and energy spectrum in disordered nonlinear systems

    , Article Physical Review B ; Volume 101, Issue 22 , 2020 Akaberian, M ; Jafari, S ; Rahimi Tabar, M. R ; Esfarjani, K ; Sharif University of Technology
    American Physical Society  2020
    Abstract
    We study phonon delocalization in disordered media in the presence of nonlinearity. By considering the Fermi-Pasta-Ulam β-model, we show that regardless of whether the initial state of the linear system is localized or not, the final state will be an extended mode after turning on the nonlinear term. We report on the results of an extensive dynamical simulation of a disordered nonlinear system, which show that, independent of the initial mode frequency, in the final state the energy spectrum is excited according to the Kolmogorov spectrum E(ω)∼ω-5/3. Finally, we show that disorder will not cause delocalization of intrinsic localized modes. © 2020 American Physical Society  

    Fetal electrocardiogram modeling using hybrid evolutionary firefly algorithm and extreme learning machine

    , Article Multidimensional Systems and Signal Processing ; Volume 31, Issue 1 , 2020 , Pages 117-133 Akhavan Amjadi, M ; Sharif University of Technology
    Springer  2020
    Abstract
    Extraction of fetal electrocardiogram (FECG) from the abdominal region of the mother’s skin is challenge task due to the high overlapping of maternal and fetal signals in this area. To overcome the problem, this paper proposes the utilization of extreme learning model (ELM) as the prediction algorithm to train on the FECG signal extracted by least mean square approach from the input abdominal and thoracic signals. The trained ELM model is used to model the FECG signal for the testing samples. Also, this paper investigates the firefly algorithm (FA) to tune the parameters of ELM and improve its performance. Due to the high complexity and too many parameters of FA, this paper embeds the... 

    Encapsulation of food components and bioactive ingredients and targeted release

    , Article International Journal of Engineering, Transactions A: Basics ; Volume 33, Issue 1 , 2020 , Pages 1-11 Alemzadeh, I ; Hajiabbas, M ; Pakzad, H ; Sajadi Dehkordi, S ; Vossoughi, A ; Sharif University of Technology
    Materials and Energy Research Center  2020
    Abstract
    The potential utilization of encapsulation techniques in food, pharmaceutical and agricultural products preparation, presents a new alternative for complementary technologies such as targeting delivery vehicles and carriers for active food ingredients. Encapsulation could be accomplished by different techniques like: simple or complex coacervation, emulsification technique, phase separation, spray drying, spray chilling or spray cooling, extrusion coating, freeze drying, fluidized-bed coating, liposomal entrapment, centrifugal suspension separation, co-crystallization and molecular inclusion complexation. Encapsulation is a method by which one bioactive material or mixture of materials is... 

    Faster Algorithms for Quantitative Analysis of MCs and MDPs with Small Treewidth

    , Article 18th International Symposium on Automated Technology for Verification and Analysis, ATVA 2020, 19 October 2020 through 23 October 2020 ; Volume 12302 LNCS , 2020 , Pages 253-270 Asadi, A ; Chatterjee, K ; Kafshdar Goharshady, A ; Mohammadi, K ; Pavlogiannis, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2020
    Abstract
    Discrete-time Markov Chains (MCs) and Markov Decision Processes (MDPs) are two standard formalisms in system analysis. Their main associated quantitative objectives are hitting probabilities, discounted sum, and mean payoff. Although there are many techniques for computing these objectives in general MCs/MDPs, they have not been thoroughly studied in terms of parameterized algorithms, particularly when treewidth is used as the parameter. This is in sharp contrast to qualitative objectives for MCs, MDPs and graph games, for which treewidth-based algorithms yield significant complexity improvements. In this work, we show that treewidth can also be used to obtain faster algorithms for the... 

    Full Nesterov-Todd step feasible interior-point algorithm for symmetric cone horizontal linear complementarity problem based on a positive-asymptotic barrier function

    , Article Optimization Methods and Software ; 2020 Asadi, S ; Mahdavi Amiri, N ; Darvay, Z ; Rigó, P .R ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    We present a feasible full step interior-point algorithm to solve the (Formula presented.) horizontal linear complementarity problem defined on a Cartesian product of symmetric cones, which is not based on a usual barrier function. The full steps are scaled utilizing the Nesterov-Todd (NT) scaling point. Our approach generates the search directions leading to the full-NT steps by algebraically transforming the centring equation of the system which defines the central trajectory using the induced barrier of a so-called positive-asymptotic kernel function. We establish the global convergence as well as a local quadratic rate of convergence of our proposed method. Finally, we demonstrate that... 

    Graph orientation with splits

    , Article Theoretical Computer Science ; Volume 844 , 2020 , Pages 16-25 Asahiro, Y ; Jansson, J ; Miyano, E ; Nikpey, H ; Ono, H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    The Minimum Maximum Outdegree Problem (MMO) is to assign a direction to every edge in an input undirected, edge-weighted graph so that the maximum weighted outdegree taken over all vertices becomes as small as possible. In this paper, we introduce a new variant of MMO called the p-Split Minimum Maximum Outdegree Problem (p-Split-MMO) in which one is allowed to perform a sequence of p split operations on the vertices before orienting the edges, for some specified non-negative integer p, and study its computational complexity. © 2020 Elsevier B.V  

    Gut-on-a-chip: Current progress and future opportunities

    , Article Biomaterials ; Volume 255 , 2020 Ashammakhi, N ; Nasiri, R ; Barros, N. R. D ; Tebon, P ; Thakor, J ; Goudie, M ; Shamloo, A ; Martin, M. G ; Khademhosseni, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Organ-on-a-chip technology tries to mimic the complexity of native tissues in vitro. Important progress has recently been made in using this technology to study the gut with and without microbiota. These in vitro models can serve as an alternative to animal models for studying physiology, pathology, and pharmacology. While these models have greater physiological relevance than two-dimensional (2D) cell systems in vitro, endocrine and immunological functions in gut-on-a-chip models are still poorly represented. Furthermore, the construction of complex models, in which different cell types and structures interact, remains a challenge. Generally, gut-on-a-chip models have the potential to... 

    The amount and temporal structure of center of pressure fluctuations during quiet standing in patients with chronic low back pain

    , Article Motor Control ; Volume 24, Issue 1 , 2020 , Pages 91-112 Azadinia, F ; Ebrahimi Takamjani, I ; Kamyab, M ; Asgari, M ; Parnianpour, M ; Sharif University of Technology
    Human Kinetics Publishers Inc  2020
    Abstract
    The characteristics of postural sway were assessed in quiet standing under three different postural task conditions in 14 patients with nonspecific chronic low back pain and 12 healthy subjects using linear and nonlinear center of pressure parameters. The linear parameters consisted of area, the mean total velocity, sway amplitude, the SD of velocity, and the phase plane portrait. The nonlinear parameters included the Lyapunov exponent, sample entropy, and the correlation dimension. The results showed that the amount of postural sway was higher in the patients with low back pain compared with the healthy subjects. Assessing the nonlinear parameters of the center of pressure showed a lower... 

    A joint encryption, channel coding and modulation scheme using QC-LDPC lattice-codes

    , Article IEEE Transactions on Communications ; Volume 68, Issue 8 , 2020 , Pages 4673-4693 Bagheri, K ; Eghlidos, T ; Sadeghi, M. R ; Panario, D ; Khodaiemehr, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    We propose a new nonlinear Rao-Nam like symmetric key encryption scheme. In our design, we employ a specific type of coded modulation schemes namely quasi-cyclic low-density parity-check (QC-LDPC) lattice-codes which have low-complexity encoding and decoding algorithms. Due to the application of coded modulation schemes in our design, the proposed scheme performs encryption, encoding and modulation simultaneously. Therefore, we regard the proposed scheme as a joint cryptosystem. The proposed joint cryptosystem withstands all variants of chosen plaintext attacks applied on Rao-Nam like cryptosystems due to its nonlinearity. Moreover, some conditions implying the uniformity of the ciphertexts... 

    Predicting scientific research trends based on link prediction in keyword networks

    , Article Journal of Informetrics ; Volume 14, Issue 4 , 2020 Behrouzi, S ; Shafaeipour Sarmoor, Z ; Hajsadeghi, K ; Kavousi, K ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The rapid development of scientific fields in this modern era has raised the concern for prospective scholars to find a proper research field to conduct their future studies. Thus, having a vision of future could be helpful to pick the right path for doing research and ensuring that it is worth investing in. In this study, we use article keywords of computer science journals and conferences, assigned by INSPEC controlled indexing, to construct a temporal scientific knowledge network. By observing keyword networks snapshots over time, we can utilize the link prediction methods to foresee the future structures of these networks. We use two different approaches for this link prediction problem.... 

    Characterization and calcination behavior of a low-grade manganese ore

    , Article Materials Today Communications ; Volume 25 , 2020 Cheraghi, A ; Becker, H ; Eftekhari, H ; Yoozbashizadeh, H ; Safarian, J ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Characterization and calcination behavior of a low-grade manganese ore, as a part of Mn ferroalloys production, was studied by XRF, ex-situ XRD, in-situ XRD, and SEM-EDS techniques. Calcination experiments were carried out at and up to 900 °C (1173 K) in air and argon atmospheres. The samples were in particles and powder forms. The results indicated that both quartz and calcite phases in the ore exhibit a bimodal spatial distribution; as relatively large regions and finely distributed in the Mn- and Fe-containing phases. By Rietveld analysis of the in-situ XRD data, the reactions occurring upon heating during the calcination process were deduced. Thermal decomposition and reactive diffusion... 

    Living near the edge: A lower-bound on the phase transition of total variation minimization

    , Article IEEE Transactions on Information Theory ; Volume 66, Issue 5 , 2020 , Pages 3261-3267 Daei, S ; Haddadi, F ; Amini, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    This work is about the total variation (TV) minimization which is used for recovering gradient-sparse signals from compressed measurements. Recent studies indicate that TV minimization exhibits a phase transition behavior from failure to success as the number of measurements increases. In fact, in large dimensions, TV minimization succeeds in recovering the gradient-sparse signal with high probability when the number of measurements exceeds a certain threshold; otherwise, it fails almost certainly. Obtaining a closed-form expression that approximates this threshold is a major challenge in this field and has not been appropriately addressed yet. In this work, we derive a tight lower-bound on... 

    Centrality-based epidemic control in complex social networks

    , Article Social Network Analysis and Mining ; Volume 10, Issue 1 , 2020 Doostmohammadian, M ; Rabiee, H. R ; Khan, U. A ; Sharif University of Technology
    Springer  2020
    Abstract
    Recent progress in the areas of network science and control has shown a significant promise in understanding and analyzing epidemic processes. A well-known model to study epidemics processes used by both control and epidemiological research communities is the susceptible–infected–susceptible (SIS) dynamics to model the spread of disease/viruses over contact networks of infected and susceptible individuals. The SIS model has two metastable equilibria: one is called the endemic equilibrium and the other is known as the disease-free or healthy-state equilibrium. Control theory provides the tools to design control actions (allocating curing or vaccination resources) in order to achieve and... 

    Lightweight and DPA-resistant post-quantum cryptoprocessor based on binary ring-LWE

    , Article 20th International Symposium on Computer Architecture and Digital Systems, CADS 2020, 19 August 2020 through 20 August 2020 ; 2020 Ebrahimi, S ; Bayat Sarmadi, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    With the exponential growth in the internet of things (IoT) applications such as smart city and e-health, more embedded devices and smart nodes are connected to the network. In order to provide security for such resource-constrained devices, different cryptographic schemes such as public key encryption (PKE) are required. However, considering the high complexity and vulnerability of classic PKE schemes against quantum attacks, it is necessary to consider other possible options. Recently, lattice-based cryptography and especially learning with errors (LWE) have gained high attention due to resistance against quantum attacks and relatively low-complexity operations. During the past decade,... 

    Lightweight and fault-resilient implementations of binary ring-lwe for iot devices

    , Article IEEE Internet of Things Journal ; Volume 7, Issue 8 , 2020 , Pages 6970-6978 Ebrahimi, S ; Bayat Sarmadi, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    While the Internet of Things (IoT) shapes the future of the Internet, communications among nodes must be secured by employing cryptographic schemes such as public-key encryption (PKE). However, classic PKE schemes, such as RSA and elliptic curve cryptography (ECC) suffer from both high complexity and vulnerability to quantum attacks. During the past decade, post-quantum schemes based on the learning with errors (LWEs) problem have gained high attention due to the lower complexity among PKE schemes. In addition to resistance against theoretical (quantum and classic) attacks, every practical implementation of any cryptosystem must also be evaluated against different side-channel attacks such... 

    A simple and fast solution for fault simulation using approximate parallel critical path tracing

    , Article Canadian Journal of Electrical and Computer Engineering ; Volume 43, Issue 2 , 2020 , Pages 100-110 Ehteram, A ; Sabaghian Bidgoli, H ; Ghasvari, H ; Hessabi, S ; Sharif University of Technology
    IEEE Canada  2020
    Abstract
    Due to the growing complexity of today's digital circuits, the speed of fault simulation has become increasingly important. Although critical path tracing (CPT) is faster than conventional methods, it is not fast enough for fault simulation of complex circuits with a large number of faults and tests. Exact stem analysis is the most important obstacle in accelerating the CPT method. The simplification of stem analysis eliminates time-consuming computations and makes the CPT method more parallelizable. An approximate and bit-parallel CPT algorithm is proposed for ultrafast fault simulation for both stuck-at-fault (SAF) and transition delay fault (TDF) models. Time linearity, speedup, and... 

    Optimal design for solar greenhouses based on climate conditions

    , Article Renewable Energy ; Volume 145 , 2020 , Pages 1255-1265 Esmaeli, H ; Roshandel, R ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Greenhouses require energy in order to provide a proper environment for crop production. Utilizing solar energy in solar greenhouses is a sustainable solution to face this problem. In this study, a solar greenhouse concept is considered, and a dynamic thermal model is developed to predict the inside air temperature. The model is integrated into an optimization procedure to find the optimal greenhouse design that has the best thermal performance by adjusting its structural parameters. This optimization procedure provides a tool to find the optimal solar greenhouse design for each climate condition and predict its performance. For instance, for the case study of Tehran (Iran), the optimal... 

    Sample complexity of classification with compressed input

    , Article Neurocomputing ; Volume 415 , 2020 , Pages 286-294 Hafez Kolahi, H ; Kasaei, S ; Soleymani Baghshah, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    One of the most studied problems in machine learning is finding reasonable constraints that guarantee the generalization of a learning algorithm. These constraints are usually expressed as some simplicity assumptions on the target. For instance, in the Vapnik–Chervonenkis (VC) theory the space of possible hypotheses is considered to have a limited VC dimension One way to formulate the simplicity assumption is via information theoretic concepts. In this paper, the constraint on the entropy H(X) of the input variable X is studied as a simplicity assumption. It is proven that the sample complexity to achieve an ∊-δ Probably Approximately Correct (PAC) hypothesis is bounded by [Formula... 

    A high-order accurate unstructured spectral difference lattice Boltzmann method for computing inviscid and viscous compressible flows

    , Article Aerospace Science and Technology ; Volume 98 , 2020 Hejranfar, K ; Ghaffarian, A ; Sharif University of Technology
    Elsevier Masson SAS  2020
    Abstract
    In the present work, the spectral difference lattice Boltzmann method (SDLBM) is implemented on unstructured meshes for the solution methodology to be capable of accurately simulating the compressible flows over complex geometries. Both the inviscid and viscous compressible flows are computed by applying the unstructured SDLBM. The compressible form of the discrete Boltzmann–BGK equation with the Watari model is considered and the solution of the resulting system of equations is obtained by applying the spectral difference method on arbitrary quadrilateral meshes. The accuracy and robustness of the unstructured SDLBM for simulating the compressible flows are demonstrated by simulating four...