Loading...
Search for: concentration
0.01 seconds
Total 1259 records

    Pre-deposited alkali (Li, Na, K) chlorides layer for effective doping of CuInSSe thin films as absorber layer in solar cells

    , Article Solar Energy ; Volume 231 , 2022 , Pages 694-704 ; 0038092X (ISSN) Hashemi, M ; Bagher Ghorashi, S. M ; Tajabadi, F ; Taghavinia, N ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    We introduce an effective method for copper indium sulfide selenide (CISSe) doping with different alkali metals (Li, Na and K) based on a pre-deposited alkali chloride layer. A simple and fast spray method is used for pre-deposition of alkali chloride layer (LiCl, NaCl, KCl) on substrate surface before spray pyrolysis deposition of copper indium disulfide CuInS2 (CIS) films followed by selenization. The different properties of alkali-doped CISSe films by the alkali chloride pre-deposition (ACPD) method were compared to the post-deposition treatment (PDT) method. Based on FESEM images, a highly compact film with large grains can be obtained for CISSe films doped with K(∼0.72 μm) and Na (∼0.56... 

    Geometry influence on fracture behavior of lap-shear solder joints

    , Article IEEE Transactions on Components, Packaging and Manufacturing Technology ; Volume 12, Issue 1 , 2022 , Pages 80-88 ; 21563950 (ISSN) Karimi, M ; Nourani, A ; Honarvar, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    Single lap-shear (SLS) specimens of 63Sn37Pb solder joints were prepared with three different adherend thicknesses at three varying joint lengths. The fracture force was measured at a shear strain rate of 0.01 s-1 for different geometries. The elastic-plastic fracture mechanics (EPFM) theory was used to find the energy dissipated in each case using a finite element model (FEM), and the fracture energy was obtained by cohesive zone modeling (CZM). Both 2-D and 3-D models were used to explain the variations in fracture energy by the level of constraint on the joint. Also, the plastic zone area and stress distribution along the solder layer were calculated at the moment of fracture. A phase... 

    On the inability of the moving interface model to predict isothermal solidification time during transient liquid phase (TLP) bonding of ni-based superalloys

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 53, Issue 1 , 2022 , Pages 126-135 ; 10735623 (ISSN) Pouranvari, M ; Ghasemi, A ; Salmasi, A ; Sharif University of Technology
    Springer  2022
    Abstract
    Understanding diffusion-induced isothermal solidification time during transient liquid phase bonding is vital in producing intermetallic-free robust joints. The isothermal solidification completion time is overestimated by the existing analytical models, even by the closest one to the real bonding conditions, known as the moving interface model. It was found that the boride formation in the diffusion affected zone of Ni-based superalloy upon using B-containing filler metals is one of the reasons behind the inability of the moving interface model to predict the isothermal solidification completion time accurately, which has received scant attention in the literature. Moreover, simplified... 

    Particulate emissions of real-world light-duty gasoline vehicle fleet in Iran

    , Article Environmental Pollution ; Volume 292 , 2022 ; 02697491 (ISSN) Shahne, M. Z ; Arhami, M ; Hosseini, V ; Al Haddad, E ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Fine particulate matter cause profound adverse health effects in Iran. Road traffic is one of the main sources of particulate matter (PM) in urban areas, and has a large contribution in PM2.5 and organic carbon concentration, in Tehran, Iran. The composition of fine PM vehicle emission is poorly known, so this paper aims to determine the mixed fleet source profile by using the analysed data from the two internal stations and the emission factor for PM light-duty vehicles emission. Tunnels are ideal media for extraction vehicle source profile and emission factor, due to vehicles are the only source of pollutant in the urban tunnels. In this study, PM samples were collected simultaneously in... 

    Attitude and deformation coupled estimation of flexible satellite using low-cost sensors

    , Article Advances in Space Research ; Volume 69, Issue 1 , 2022 , Pages 677-689 ; 02731177 (ISSN) Ghani, M ; Assadian, N ; Varatharajoo, R ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Solar panel flexibility plays an important role in the attitude control of satellites. Therefore, traditionally the deformations of flexible solar panels are measured with a series of sensors along the panels itself. This paper presents a novel maiden attempt to simultaneously estimate the attitude and deformation of a flexible satellite using only 2 low-cost attitude sensors namely the sun sensor and magnetometer measurements. The flexible satellite is considered as a central rigid body with two attached flexible panels in order to derive the governing dynamic equations based on the Lagrange's equation. Both Extended Kalman filter (EKF) and Unscented Kalman Filter (UKF) are employed for the... 

    Computer simulation of the effect of particle stiffness coefficient on the particle-fluid flows

    , Article Particulate Science and Technology ; Volume 40, Issue 2 , 2022 , Pages 233-242 ; 02726351 (ISSN) Akhshik, S ; Rajabi, M ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    The Computational fluid dynamics (CFD)–discrete element method (DEM) numerical simulation may be applied to predict the hydrodynamic behavior of dense particle–fluid flows. The main drawback of this simulation is the long computational time required owing to the large number of particles and the minute time-step required to maintain a stable solution. In this work, a new method to improve the efficiency and accuracy of CFD–DEM simulations is presented. The particle stiffness coefficient is used as a flexible parameter to improve the accuracy and efficiency of the model. The particle concentration distribution results are compared with experimental one’s to derive the optimum effective... 

    An experimental study on kerosene spray combustion under conventional and hot-diluted conditions

    , Article Combustion Science and Technology ; Volume 194, Issue 13 , 2022 , Pages 2712-2751 ; 00102202 (ISSN) Mardani, A ; Azimi, A ; Karimi Motaalegh Mahalegi, H ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    The combustion of kerosene spray under hot-diluted conditions and conventional conditions was experimentally investigated. By examining flame photographs, chemiluminescence images, and in-field temperature measurements, the separate effect of different variables including oxygen concentration, temperature and velocity of the co-flowing air, fuel flow rate and injection pressure, and eventually the type of spray nozzle on multiple parameters such as flame stability, structure, luminosity, temperature field, and qualitative CH radical distribution, as well as HCO and NO2 with lower precision, in the reaction region, have been studied. It was observed that an increment in injection pressure and... 

    Synthesis and characterization of a chitosan/gelatin transparent film crosslinked with a combination of EDC/NHS for corneal epithelial cell culture scaffold with potential application in cornea implantation

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; Volume 71, Issue 8 , 2022 , Pages 568-578 ; 00914037 (ISSN) Shahin, A ; Ramazani S. A, A ; Mehraji, S ; Eslami, H ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    The diseases and disorders of the cornea may lead to blindness, and cornea transplantation has been an effective treatment in this regard. However, lack of cornea throughout the world makes this treatment difficult. Therefore, the first goal of the present study is to make a chitosan/gelatin hyaline film with NHS and EDC crosslinkers for transplanting the epithelial cells of the cornea. Two solutions of gelatin and chitosan were mixed homogeneously before crosslinking in ratios of 20/80, 30/70, 40/60, and 50/50 (Gel/Chi). After 24 hours, they were put in an oven to dry, then EDC and NHS were added to the mixture as crosslinker. Corneal epithelial cell morphology was assessed qualitatively... 

    Techno-economic analysis of a modified concentrating photovoltaic/organic Rankine cycle system

    , Article International Journal of Ambient Energy ; Volume 43, Issue 1 , 2022 , Pages 2026-2038 ; 01430750 (ISSN) Moltames, R ; Roshandel, R ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    The combination of concentrating photovoltaic (CPV) and organic Rankine cycle (ORC) systems not only leads to a reduction of photovoltaic (PV) operating temperature, but also leads to an additional electric power production. Increase in the temperature of the PV decreases its operating efficiency, while increases the ORC efficiency. Therefore, there is an optimum temperature in which the total electricity produced by the combined system will be maximum. In this study, a modified CPV/ORC system is simulated and the optimum operating temperature of the PV panel is determined for different PV efficiencies. The most striking result is that increase in the PV nominal efficiency will result in the... 

    Dissolution and remobilization of NAPL in surfactant-enhanced aquifer remediation from microscopic scale simulations

    , Article Chemosphere ; Volume 289 , 2022 ; 00456535 (ISSN) Ramezanzadeh, M ; Aminnaji, M ; Rezanezhad, F ; Ghazanfari, M. H ; Babaei, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this paper, the dissolution and mobilization of non-aqueous phase liquid (NAPL) blobs in the Surfactant-Enhanced Aquifer Remediation (SEAR) process were upscaled using dynamic pore network modeling (PNM) of three-dimensional and unstructured networks. We considered corner flow and micro-flow mechanisms including snap-off and piston-like movement for two-phase flow. Moreover, NAPL entrapment and remobilization were evaluated using force analysis to develop the capillary desaturation curve (CDC) and predict the onset of remobilization. The corner diffusion mechanism was also applied in the modeling of interphase mass transfer to represent NAPL dissolution as the dominant mass transfer... 

    Simultaneous leaching of Cu, Al, and Ni from computer printed circuit boards using Penicillium simplicissimum

    , Article Resources, Conservation and Recycling ; Volume 177 , 2022 ; 09213449 (ISSN) Esmaeili, A ; Arshadi, M ; Yaghmaei, P.O. C. A. P. E. D. S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    A short lifespan and increased consumption patterns make e-waste the world's fastest-growing waste stream. Computers are one of the most significant parts of e-waste. Recycling of e-waste has been introduced as the main solution to deal with environmental problems and to save natural mines. This research aims to investigate the bioleaching of Cu, Ni, and Al from computer printed circuit boards (CPCBs) using Penicillium simplicissimum. The adaptation phase began at 1 g/l CPCBs powder with 107 spores and final pulp density was reached at 30 g/l. The most effective parameters including pulp density, initial pH, and the sucrose concentration were optimized to achieve maximum simultaneous... 

    Green porous benzamide-like nanomembranes for hazardous cations detection, separation, and concentration adjustment

    , Article Journal of Hazardous Materials ; Volume 423 , 2022 ; 03043894 (ISSN) Rabiee, N ; Fatahi, Y ; Asadnia, M ; Daneshgar, H ; Kiani, M ; Ghadiri, A. M ; Atarod, M ; Mashhadzadeh, A. H ; Akhavan, O ; Bagherzadeh, M ; Lima, E. C ; Saeb, M. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Green biomaterials play a crucial role in the diagnosis and treatment of diseases as well as health-related problem-solving. Typically, biocompatibility, biodegradability, and mechanical strength are requirements centered on biomaterial engineering. However, in-hospital therapeutics require an elaborated synthesis of hybrid and complex nanomaterials capable of mimicking cellular behavior. Accumulation of hazardous cations like K+ in the inner and middle ear may permanently damage the ear system. We synthesized nanoplatforms based on Allium noeanum to take the first steps in developing biological porous nanomembranes for hazardous cation detection in biological media. The... 

    Green products from herbal medicine wastes by subcritical water treatment

    , Article Journal of Hazardous Materials ; Volume 424 , 2022 ; 03043894 (ISSN) Jouyandeh, M ; Tavakoli, O ; Sarkhanpour, R ; Sajadi, S. M ; Zarrintaj, P ; Rabiee, N ; Akhavan, O ; Lima, E. C ; Saeb, M. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Herbal medicine wastes (HMWs) are byproducts of medicine factories, which are mainly landfilled for their environmental problems. Only bearing in mind the contamination and concerns caused by the COVID-19 pandemic and environmental emissions, the worth of herbal medicine wastes management and conversion to green products can be understood. In this work, subcritical water treatment was carried out batch-wise in a stainless tube reactor in the pressure range of 0.792–30.0 MPa, varying the temperature (127–327 °C) and time (1–60 min) of extraction. This resulted in new and green material sources, including organic acids, amino acids, and sugars. Amazingly, at very low extraction times (below 5... 

    A new application of multi-criteria decision making in identifying critical dust sources and comparing three common receptor-based models

    , Article Science of the Total Environment ; Volume 808 , 2022 ; 00489697 (ISSN) Hosseini Dehshiri, S. S ; Firoozabadi, B ; Afshin, H ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Dust storms are a common phenomenon in arid and semi-arid regions in West Asia, which has led to high levels of PM10 in local and remote area. The Yazd city in Iran with a high PM10 level located downstream of dust sources in the Middle East and Central Asia. In this study, based on meteorological and PM10 monitoring data, backward trajectory modeling of air parcels related to dust events at Yazd station was performed using the HYSPLIT model in 2012–2019. The trajectory cluster analysis was used to identify the main dust transport pathways and wind systems. Three methods of Cross-referencing Backward Trajectory (CBT), Potential Source Contribution Function (PSCF) and Concentration Weighted... 

    Multifunctional green synthesized Cu–Al layered double hydroxide (LDH) nanoparticles: anti-cancer and antibacterial activities

    , Article Scientific Reports ; Volume 12, Issue 1 , 2022 ; 20452322 (ISSN) Kiani, M ; Bagherzadeh, M ; Ghadiri, A. M ; Makvandi, P ; Rabiee, N ; Sharif University of Technology
    Nature Research  2022
    Abstract
    Doxorubicin (DOX) is a potent anti-cancer agent and there have been attempts in developing nanostructures for its delivery to tumor cells. The nanoparticles promote cytotoxicity of DOX against tumor cells and in turn, they reduce adverse impacts on normal cells. The safety profile of nanostructures is an important topic and recently, the green synthesis of nanoparticles has obtained much attention for the preparation of biocompatible carriers. In the present study, we prepared layered double hydroxide (LDH) nanostructures for doxorubicin (DOX) delivery. The Cu–Al LDH nanoparticles were synthesized by combining Cu(NO3)2·3H2O and Al(NO3)3·9H2O, and then, autoclave at 110. The green... 

    Experimental Study on the Effect of Salinity on Biodegradation of Oil components (Furfural case study) in Moving Bed Biofilm Reactor (MBBR) System

    , M.Sc. Thesis Sharif University of Technology Delparish, Alireza (Author) ; Borghei, Mahdi (Supervisor)
    Abstract
    Due to the increasing relationships, and expand the transportation of goods and fuel by ships and other factors may also cause the release of pollution into the sea, Oil and also its derivatives are the dangerous pollutants that threaten the health of the environment and may destroy the local ecosystem.One of its highly carcinogenic pollutants that even inhaled,is furfural. A new and efficient method for the filtration of toxic substances and hazardous wastewaters, using the moving bed biofilm reactor treatment that is MBBR system. Microorganisms present in the reactor, that was used in this project, from the microorganisms of industrial Behran Company. Removal of furfural from the harsh... 

    Numerical Modelling on Effects of Elevated Temperatures on the Performance of Concrete-filled Pultruded GFRP Tubular Columns

    , M.Sc. Thesis Sharif University of Technology Mollakhalili, Arian (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    Concrete-filled FRP tubes have gained popularity among structures in areas with harsh environmental condition. Despite their unique material properties such as resistance to corrosion, noticeable axial stiffness, and durability, FRP materials have poor resistance to elevated temperatures. This paper presents numerical investigations on the behavior and capacity of concrete-filled pultruded GFRP tubes (CFGFTs) after exposure to elevated temperatures under concentric compression. Variables in this study were the tube’s thickness of 3, 5, and 7mm, the infill concrete’s compressive strengths of 30 and 60MPa, and the exposure temperature of 25, 100, 200, 300, and 400°C. The results in this study... 

    Study of the Elastodynamic Fields due to the Scattering of P-Waves by a Buried Non-Uniformly Coated Tunnel

    , Ph.D. Dissertation Sharif University of Technology Massoumi Goudarzi, Amin (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    With the progress of engineering science, the development of underground spaces and buried tunnels has witnessed remarkable expansion. Considering the frequency of hazardous events such as earthquakes and unforeseen consequences arising from underground activities and geology in underground engineering, the determination of the Dynamic Stress Concentration Factor (DSCF) has been widely recognized as a crucial factor in the study and design of tunnels and underground structures. It is also extensively considered in evaluating their damage. The investigation of wave dispersion and determination of the stress concentration factor was first proposed by Sezawa (1927). In this study, the... 

    Designing and Fabrication of a Wearable Colorimetric Biosensor Based on Polyvinyl Alcohol Hydrogel with the Help of Machine Learning to Detect Glucose Concentration and PH Level of Body Sweat

    , M.Sc. Thesis Sharif University of Technology Chenani, Hossein (Author) ; Simchi, Abdolreza (Supervisor) ; Ekrami, Aliakbar (Supervisor)
    Abstract
    Simultaneous detection of pH and glucose levels in sweat is a promising tool for early skin disease detection and diabetes diagnosis. Hydrogels have attracted a lot of attention in the field of wearable biosensors due to sweat absorption capability, biocompatibility, and the ability to store enzymes and reagents in their cavities. In this research, we have presented an innovative wearable colorimetric biosensor based on polyvinyl alcohol (PVA) hydrogel, which can simultaneously measure pH level (in the range of 3-9) and glucose concentration (in the range of 0.025-0.5 mM) of sweat with the help of machine learning (ML). This wearable sensor consists of two main parts: sensors and a patch, in...