Loading...
Search for: cytology
0.013 seconds

    Simultaneous controlled release of 5-FU, DOX and PTX from chitosan/PLA/5-FU/g-C3N4-DOX/g-C3N4-PTX triaxial nanofibers for breast cancer treatment in vitro

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 179 , 2019 , Pages 495-504 ; 09277765 (ISSN) Habibi Jouybari, M ; Hosseini, S ; Mahboobnia, K ; Boloursaz, L. A ; Moradi, M ; Irani, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In the present study, the tri-layer nanofibers were synthesized via triaxial electrospinning process to control the sustained delivery of Doxorubicin (DOX), Paclitaxel (PTX) and 5- fluorouracil (5-FU) anticancer drugs from nanofibers. The 5-FU molecules were incorporated into the core solution (chitosan/polyvinyl alcohol (CS/PVA)) to fabricate the CS/PVA/5-FU inner layer of nanofibers. The intermediate layer was prepared from poly(lactic acid)/chitosan (PLA/CS) nanofibers. The DOX and PTX molecules were initially loaded into the g-C3N4 nanosheets and following were incorporated into the PLA/CS solution to fabricate the outer layer of nanofibers. The synthesized nanosheets and nanofibers were... 

    Experimental investigation on asphaltene biodegradability using microorganism: cell surface properties’ approach

    , Article Journal of Petroleum Exploration and Production Technology ; Volume 9, Issue 2 , 2019 , Pages 1413-1422 ; 21900558 (ISSN) Iraji, S ; Ayatollahi, S ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    Asphaltene precipitation is known to be responsible for serious challenges in oil industry such as wellbore damage, oil flow reduction, and plugging of transportation lines. The traditional methods to remove asphaltene deposition are mostly based on chemical solvent. One of the recent proposed green and cost–effect remedial methods is the application of microorganisms capable of consuming the heavy hydrocarbon chains. The cell surface hydrophobicity among others effectively manipulates the efficiency of the microorganism for asphaltene degradation. Besides, surface active agents would affect the microorganism adhesion and cell surface properties, and alters its hydrophobicity. Investigating... 

    Phenomenological tissue fracture modeling for an Endoscopic Sinus and Skull Base Surgery training system based on experimental data

    , Article Medical Engineering and Physics ; Volume 68 , 2019 , Pages 85-93 ; 13504533 (ISSN) Sadeghnejad, S ; Farahmand, F ; Vossoughi, G ; Moradi, H ; Mousa Sadr Hosseini, S ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The ideal simulator for Endoscopic Sinus and Skull Base Surgery (ESSS)training must be supported by a physical model and provide repetitive behavior in a controlled environment. Development of realistic tissue models is a key part of ESSS virtual reality (VR)-based surgical simulation. Considerable research has been conducted to address haptic or force feedback and propose a phenomenological tissue fracture model for sino-nasal tissue during surgical tool indentation. Mechanical properties of specific sino-nasal regions of the sheep head have been studied in various indentation and relaxation experiments. Tool insertion at different indentation rates into coronal orbital floor (COF)tissue is... 

    Cache-Aided interference management in wireless cellular networks

    , Article IEEE Transactions on Communications ; Volume 67, Issue 5 , 2019 , Pages 3376-3387 ; 00906778 (ISSN) Naderializadeh, N ; Maddah Ali, M. A ; Salman Avestimehr, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    We consider the problem of interference management in wireless cellular networks with caches at both base stations and receivers, and we characterize the degrees of freedom (DoFs) per cell to within an additive gap of (1/3) and a multiplicative gap of 2 for all system parameters, under one-shot linear schemes. Our result indicates that the one-shot linear DoF per cell scales linearly with the total amount of cache available in the cell, i.e., the sum of the caches at the central base station and all the receivers within the cell, resembling a similar phenomenon previously observed for the case of fully connected wireless networks. To establish the result, we propose a decentralized and... 

    Early cancer detection in blood vessels using mobile nanosensors

    , Article IEEE Transactions on Nanobioscience ; Volume 18, Issue 2 , 2019 , Pages 103-116 ; 15361241 (ISSN) Mosayebi, R ; Ahmadzadeh, A ; Wicke, W ; Jamali, V ; Schober, R ; Nasiri Kenari, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    In this paper, we propose using mobile nanosensors (MNSs) for early stage anomaly detection. For concreteness, we focus on the detection of cancer cells located in a particular region of a blood vessel. These cancer cells produce and emit special molecules, so-called biomarkers, which are symptomatic for the presence of anomaly, into the cardiovascular system. Detection of cancer biomarkers with conventional blood tests is difficult in the early stages of a cancer due to the very low concentration of the biomarkers in the samples taken. However, close to the cancer cells, the concentration of the cancer biomarkers is high. Hence, detection is possible if a sensor with the ability to detect... 

    Fabrication, modeling and optimization of lyophilized advanced platelet rich fibrin in combination with collagen-chitosan as a guided bone regeneration membrane

    , Article International Journal of Biological Macromolecules ; Volume 125 , 2019 , Pages 383-391 ; 01418130 (ISSN) Ansarizadeh, M ; Mashayekhan, S ; Saadatmand, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, lyophilized advanced platelet rich fibrin (A-PRF) was used in combination with collagen-chitosan membrane for the first time to combine advantages of both collagen and A-PRF membranes. Response surface methodology (RSM) was used to design the experimental condition and to correlate the effects of parameters, including chitosan/collagen (chit/col) weight ratio and A-PRF concentration on Young's modulus, mesenchymal stem cell (MSCs) viability and degradation rate of the membranes. Results showed that Young's modulus of the membranes was intensified by increasing chit/col weight ratio and decreasing A-PRF concentration from 3 to 8 MPa. Cell viability of MSCs was improved by both... 

    Neuro-Skins: Dynamics, Plasticity and effect of neuron type and cell size on their response

    , Article Neural Processing Letters ; Volume 49, Issue 1 , 2019 , Pages 19-41 ; 13704621 (ISSN) Joghataie, A ; Shafiei Dizaji, M ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    We are introducing a new type of membrane, called neuro-skin or neuro-membrane. It is comprised of neurons embedded in a plastic membrane. The skin is smart and adaptive and is capable of providing desirable response to inputs intelligently. This way, the neuro-skin can be considered as a new type of neural network with adaptivity and learning capabilities. However, in this paper, only the response of neuro-skins to a dynamic input is studied. The membrane is modelled by nonlinear dynamic finite elements. Each finite element is considered as a cell of the neuro-skin which has a neuron. The neuron is the intelligent nucleus of the element. So, the finite elements are called finite... 

    A low-power single-ended SRAM in FinFET technology

    , Article AEU - International Journal of Electronics and Communications ; Volume 99 , 2019 , Pages 361-368 ; 14348411 (ISSN) Sayyah Ensan, S ; Moaiyeri, M. H ; Moghaddam, M ; Hessabi, S ; Sharif University of Technology
    Elsevier GmbH  2019
    Abstract
    This paper presents a single-ended low-power 7T SRAM cell in FinFET technology. This cell enhances read performance by isolating the storage node from the read path. Moreover, disconnecting the feedback path of the cross-coupled inverters during the write operation enhances WSNM by nearly 7.7X in comparison with the conventional 8T SRAM cell. By using only one bit-line, this cell reduces power consumption and PDP compared to the conventional 8T SRAM cell by 82% and 35%, respectively. © 2018 Elsevier GmbH  

    A portable culture chamber for studying the effects of hydrostatic pressure on cellular monolayers

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 233, Issue 3 , 2019 , Pages 807-816 ; 09544062 (ISSN) Kiyoumarsioskouei, A ; Saidi, M. S ; Mosadegh, B ; Firoozabadi, B ; Sharif University of Technology
    SAGE Publications Ltd  2019
    Abstract
    Hydrostatic pressure is one of the most fundamental and common mechanical stimuli in the body, playing a critical role in the homeostasis of all organ systems. Kidney function is affected by high blood pressure, namely hypertension, by the increased pressure acting on the glomerular capillary walls. This general effect of hypertension is diagnosed as a chronic disease, but underlying mechanistic causes are still not well understood. This paper reports a portable and adaptive device for studying the effects of hydrostatic pressure on a monolayer of cells. The fabricated device fits within a conventional incubation system and microscope. The effects of various pressures and durations were... 

    Bilayered heparinized vascular graft fabricated by combining electrospinning and freeze drying methods

    , Article Materials Science and Engineering C ; Volume 94 , 2019 , Pages 1067-1076 ; 09284931 (ISSN) Khayat Norouzi, S ; Shamloo, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Small diameter vascular grafts (<6 mm) are highly demanded for patients suffering from severe occluded arteries to be used as a bypass or substituted conduit. Fabricating a graft with appropriate structural, mechanical and cell growth properties which has simultaneously anti-thrombogenic trait is a challenge nowadays. Here, we proposed a bilayer heparinized vascular graft that can mimic the structural and mechanical characteristics close to those of the native coronary artery by combining electrospinning and freeze drying methods. In this study, the inner layer was made by co-electrospinning of synthetic polymer, poly-caprolactone (PCL) and the natural polymer, gelatin (Gel). Also, heparin... 

    Download elastic traffic rate optimization via NOMA protocols

    , Article IEEE Transactions on Vehicular Technology ; Volume 68, Issue 1 , 2019 , Pages 713-727 ; 00189545 (ISSN) Mokhtari, F ; Mili, M. R ; Eslami, F ; Ashtiani, F ; Makki, B ; Mirmohseni, M ; Nasiri Kenari, M ; Svensson, T ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Non-orthogonal multiple access (NOMA) is a promising scheme for the fifth generation (5G) of mobile communication systems. In this scheme, transmission to multiple users is performed on the same subchannel using superposition coding and successive interference cancellation. In this paper, we focus on a multi-cell network with two users' data traffic models, namely elastic and streaming. We exploit the NOMA scheme in order to maximize the download elastic traffic rate at cells, without degrading the download streaming traffic rates. Since elastic traffic rates at different cells are interactive, we maximize the total elastic traffic rates assuming either perfect or partial channel state... 

    Bilayered heparinized vascular graft fabricated by combining electrospinning and freeze drying methods

    , Article Materials Science and Engineering C ; Volume 94 , 2019 , Pages 1067-1076 ; 09284931 (ISSN) Khayat Norouzi, S ; Shamloo, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Small diameter vascular grafts (<6 mm) are highly demanded for patients suffering from severe occluded arteries to be used as a bypass or substituted conduit. Fabricating a graft with appropriate structural, mechanical and cell growth properties which has simultaneously anti-thrombogenic trait is a challenge nowadays. Here, we proposed a bilayer heparinized vascular graft that can mimic the structural and mechanical characteristics close to those of the native coronary artery by combining electrospinning and freeze drying methods. In this study, the inner layer was made by co-electrospinning of synthetic polymer, poly-caprolactone (PCL) and the natural polymer, gelatin (Gel). Also, heparin... 

    Download elastic traffic rate optimization via NOMA protocols

    , Article IEEE Transactions on Vehicular Technology ; Volume 68, Issue 1 , 2019 , Pages 713-727 ; 00189545 (ISSN) Mokhtari, F ; Robat Mili, M ; Eslami, F ; Ashtiani, F ; Makki, B ; Mirmohseni, M ; Nasiri Kenari, M ; Svensson, T ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Non-orthogonal multiple access (NOMA) is a promising scheme for the fifth generation (5G) of mobile communication systems. In this scheme, transmission to multiple users is performed on the same subchannel using superposition coding and successive interference cancellation. In this paper, we focus on a multi-cell network with two users' data traffic models, namely elastic and streaming. We exploit the NOMA scheme in order to maximize the download elastic traffic rate at cells, without degrading the download streaming traffic rates. Since elastic traffic rates at different cells are interactive, we maximize the total elastic traffic rates assuming either perfect or partial channel state... 

    Simulation of blood particle separation in a trapezoidal microfluidic device by acoustic force

    , Article IEEE Transactions on Electron Devices ; Volume 66, Issue 3 , 2019 , Pages 1495-1503 ; 00189383 (ISSN) Shamloo, A ; Yazdan Parast, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Nowadays, the importance of the blood particles separation is undeniable in medical fields and there are different sorts of separation methods accordingly. Acoustic cell separation is chosen in this paper. Also, numerical methods have been used to study the effect of geometrical factors on the separation of the particles before spending time and expenses in a trial and error manner experimentally. We have implemented a plenary finite-element-based simulation of separatingblood particles such as white blood cells and platelets in an acoustic field using standing surface acoustic waves. In this paper, unlike previous works in which the channel is rectangular; the channel is trapezoidal in... 

    Tunable Stopband HTS Josephson Junction Left-Handed Transmission Line with Independently Biasable Unit Cells

    , Article IEEE Transactions on Applied Superconductivity ; Volume 30, Issue 1 , 2020 Alizadeh, A ; Rejaei, B ; Fardmanesh, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    A practical coplanar Josephson junction left-handed transmission line based on a step-edge junction technique is proposed in high-temperature superconductor technology and analyzed by electromagnetic simulations. The layout is designed for monolayer Yttrium Barium Copper Oxide thin film fabrication process. The propagation stopbands are tunable by controlling bias currents of Josephson junction arrays acting as parallel inductors for unit cells of the transmission line. Unlike the reported designs, each unit cell of our left-handed transmission line is independently biasable due to dc isolation of the unit cells along the transmission line. Being individually biasable is practically... 

    Bioinspired nanofiber scaffold for differentiating bone marrow-derived neural stem cells to oligodendrocyte-like cells: Design, fabrication, and characterization

    , Article International Journal of Nanomedicine ; Volume 15 , 2020 , Pages 3903-3920 Boroojeni, F. R ; Mashayekhan, S ; Abbaszadeh, H. A ; Ansarizadeh, M ; Khoramgah, M. S ; Rahimi Movaghar, V ; Sharif University of Technology
    Dove Medical Press Ltd  2020
    Abstract
    Background: Researchers are trying to study the mechanism of neural stem cells (NSCs) differentiation to oligodendrocyte-like cells (OLCs) as well as to enhance the selective differentiation of NSCs to oligodendrocytes. However, the limitation in nerve tissue acces-sibility to isolate the NSCs as well as their differentiation toward oligodendrocytes is still challenging. Purpose: In the present study, a hybrid polycaprolactone (PCL)-gelatin nanofiber scaffold mimicking the native extracellular matrix and axon morphology to direct the differentiation of bone marrow-derived NSCs to OLCs was introduced. Materials and Methods: In order to achieve a sustained release of T3, this factor was... 

    Effect of input voltage frequency on the distribution of electrical stresses on the cell surface based on single-cell dielectrophoresis analysis

    , Article Scientific Reports ; Volume 10, Issue 1 , 2020 Dastani, K ; Moghimi Zand, M ; Kavand, H ; Javidi, R ; Hadi, A ; Valadkhani, Z ; Renaud, P ; Sharif University of Technology
    Nature Research  2020
    Abstract
    Electroporation is defined as cell membrane permeabilization under the application of electric fields. The mechanism of hydrophilic pore formation is not yet well understood. When cells are exposed to electric fields, electrical stresses act on their surfaces. These electrical stresses play a crucial role in cell membrane structural changes, which lead to cell permeabilization. These electrical stresses depend on the dielectric properties of the cell, buffer solution, and the applied electric field characteristics. In the current study, the effect of electric field frequency on the electrical stresses distribution on the cell surface and cell deformation is numerically and experimentally... 

    Graphene oxide negatively regulates cell cycle in embryonic fibroblast cells

    , Article International Journal of Nanomedicine ; Volume 15 , 2020 , Pages 6201-6209 Hashemi, E ; Akhavan, O ; Shamsara, M ; Ansari Majd, S ; Sanati, M. H ; Daliri Joupari, M ; Farmany, A ; Sharif University of Technology
    Dove Medical Press Ltd  2020
    Abstract
    Background: Unique properties of graphene and its derivatives make them attractive in the field of nanomedicine. However, the mass application of graphene might lead to side effects, which has not been properly addressed in previous studies, especially with regard to its effect on the cell cycle. Methods: The effect of two concentrations (100 and 200 μg/mL) of nano-and microsized graphene oxide (nGO and mGO) on apoptosis, cell cycle, and ROS generation was studied. The effect of both sizes on viability and genotoxicity of the embryonic fibroblast cell cycle was evaluated. MTT and flow cytometry were applied to evaluate the effects of graphene oxide (GO) nanosheets on viability of cells.... 

    Synthesis and characterization of 3D-printed functionally graded porous titanium alloy

    , Article Journal of Materials Science ; Volume 55, Issue 21 , 22 April , 2020 , Pages 9082-9094 Hindy, A ; Farahmand, F ; Pourdanesh, F ; Torshabi, M ; Al Janabi, A. H ; Rasoulianboroujeni, M ; Tayebi, L ; Tabatabaei, F. S ; Sharif University of Technology
    Springer  2020
    Abstract
    This study aims to 3D print titanium alloy constructs incorporating gradient of porosities, from the fully dense core to the porous outer surface. Gradient porous specimens were prepared using selective laser melting (SLM). Fully dense specimens fabricated by SLM were used as the control group. Characterization of samples was done using X-ray tomography, uniaxial compression testing, and optical and scanning electron microscopes. The biocompatibility of fabricated samples was investigated using human periodontal ligament stem cells via assessment of cell attachment, viability, and proliferation by direct and indirect assays. The data were analyzed using ANOVA and Tukey’s post hoc test.... 

    Induced cell migration based on a bioactive hydrogel sheet combined with a perfused microfluidic system

    , Article Biomedical Materials (Bristol) ; Volume 15, Issue 4 , May , 2020 Jafarkhani, M ; Jafarkhani, M ; Salehi, Z ; Mashayekhan, S ; Kowsari Esfahan, R ; Dolatshahi Pirouz, A ; Bonakdar, S ; Shokrgozar, M. A ; Sharif University of Technology
    Institute of Physics Publishing  2020
    Abstract
    Endothelial cell migration is a crucial step in the process of new blood vessel formation - a necessary process to maintain cell viability inside thick tissue constructs. Here, we report a new method for maintaining cell viability and inducing cell migration using a perfused microfluidic platform based on collagen gel and a gradient hydrogel sheet. Due to the helpful role of the extracellular matrix components in cell viability, we developed a hydrogel sheet from decellularized tissue (DT) of the bovine heart and chitosan (CS). The results showed that hydrogel sheets with an optimum weight ratio of CS/DT = 2 possess a porosity of around 75%, a mechanical strength of 23 kPa, and display cell...