Loading...
Search for: cytology
0.013 seconds
Total 229 records

    Temporary skin grafts based on hybrid graphene oxide-natural biopolymer nanofibers as effective wound healing substitutes: pre-clinical and pathological studies in animal models

    , Article Journal of Materials Science: Materials in Medicine ; Volume 28, Issue 5 , 2017 , 73 ; 09574530 (ISSN) Mahmoudi, N ; Eslahi, N ; Mehdipour, A ; Mohammadi, M ; Akbari, M ; Samadikuchaksaraei, A ; Simchi, A ; Sharif University of Technology
    Springer New York LLC  2017
    Abstract
    Abstract: In recent years, temporary skin grafts (TSG) based on natural biopolymers modified with carbon nanostructures have received considerable attention for wound healing. Developments are required to improve physico-mechanical properties of these materials to match to natural skins. Additionally, in-deep pre-clinical examinations are necessary to ensure biological performance and toxicity effect in vivo. In the present work, we show superior acute-wound healing effect of graphene oxide nanosheets embedded in ultrafine biopolymer fibers (60 nm) on adult male rats. Nano-fibrous chitosan-based skin grafts crosslinked by Genepin with physico-mechanical properties close to natural skins were... 

    A robust and low-power near-threshold SRAM in 10-nm FinFET technology

    , Article Analog Integrated Circuits and Signal Processing ; Volume 94, Issue 3 , 2018 , Pages 497-506 ; 09251030 (ISSN) Sayyah Ensan, S ; Moaiyeri, M. H ; Hessabi, S ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    This paper presents a robust and low-power single-ended robust 11T near-threshold SRAM cell in 10-nm FinFET technology. The proposed cell eliminates write disturbance and enhances write performance by disconnecting the path between cross-coupled inverters during the write operation. FinFETs suffer from width quantization, and SRAM performance is highly dependent to transistors sizing. The proposed structure with minimum sized tri-gate FinFETs operates without failure under major process variations. In addition, read disturbance is reduced by isolating the storage nodes during the read operations. To reduce power consumption this cell uses only one bit-line for both read and write operations.... 

    Neuro-Skins: Dynamics, plasticity and effect of neuron type and cell size on their response

    , Article Neural Processing Letters ; 2018 , Pages 1-23 ; 13704621 (ISSN) Joghataie, A ; Shafiei Dizaji, M ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    We are introducing a new type of membrane, called neuro-skin or neuro-membrane. It is comprised of neurons embedded in a plastic membrane. The skin is smart and adaptive and is capable of providing desirable response to inputs intelligently. This way, the neuro-skin can be considered as a new type of neural network with adaptivity and learning capabilities. However, in this paper, only the response of neuro-skins to a dynamic input is studied. The membrane is modelled by nonlinear dynamic finite elements. Each finite element is considered as a cell of the neuro-skin which has a neuron. The neuron is the intelligent nucleus of the element. So, the finite elements are called finite... 

    Neuro-Skins: Dynamics, Plasticity and effect of neuron type and cell size on their response

    , Article Neural Processing Letters ; Volume 49, Issue 1 , 2019 , Pages 19-41 ; 13704621 (ISSN) Joghataie, A ; Shafiei Dizaji, M ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    We are introducing a new type of membrane, called neuro-skin or neuro-membrane. It is comprised of neurons embedded in a plastic membrane. The skin is smart and adaptive and is capable of providing desirable response to inputs intelligently. This way, the neuro-skin can be considered as a new type of neural network with adaptivity and learning capabilities. However, in this paper, only the response of neuro-skins to a dynamic input is studied. The membrane is modelled by nonlinear dynamic finite elements. Each finite element is considered as a cell of the neuro-skin which has a neuron. The neuron is the intelligent nucleus of the element. So, the finite elements are called finite... 

    Alumina feeding system changes in aluminum electrochemical cell with d18 technology for energy efficiency (Case study: Almahdi-hormozal aluminum smelter)

    , Article 147th Annual Meeting and Exhibition of the Minerals, Metals and Materials Society, TMS 2018, 11 March 2018 through 15 March 2018 ; Volume Part F12 , 2018 , Pages 721-728 ; 23671181 (ISSN); 9783319725253 (ISBN) Siahooei, M. A ; Samimi, A ; Baharvand, B ; Sharif University of Technology
    Springer International Publishing  2018
    Abstract
    Aluminum reduction cells have benefited from point feeding technology for a long time, but there are still smelters which are using the old technology of center break and center feed system. Due to several factors this system is no longer approved and there have been a few attempts worldwide to upgrade these cells so as to implement the newer technology by applying mechanical and automation changes. In this paper we will present an attempt which was made in order to retrofit a so-called center break cell to point feeder cell. The results show that this project has decreased the energy consumption and anode effect frequency. Furthermore, there has been a significant increase in current... 

    Synthesis and characterization of 3D-printed functionally graded porous titanium alloy

    , Article Journal of Materials Science ; Volume 55, Issue 21 , 22 April , 2020 , Pages 9082-9094 Hindy, A ; Farahmand, F ; Pourdanesh, F ; Torshabi, M ; Al Janabi, A. H ; Rasoulianboroujeni, M ; Tayebi, L ; Tabatabaei, F. S ; Sharif University of Technology
    Springer  2020
    Abstract
    This study aims to 3D print titanium alloy constructs incorporating gradient of porosities, from the fully dense core to the porous outer surface. Gradient porous specimens were prepared using selective laser melting (SLM). Fully dense specimens fabricated by SLM were used as the control group. Characterization of samples was done using X-ray tomography, uniaxial compression testing, and optical and scanning electron microscopes. The biocompatibility of fabricated samples was investigated using human periodontal ligament stem cells via assessment of cell attachment, viability, and proliferation by direct and indirect assays. The data were analyzed using ANOVA and Tukey’s post hoc test.... 

    Numerical and analytical simulation of multilayer cellular scaffolds

    , Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Volume 42, Issue 5 , 2 May , 2020 Khanaki, H. R ; Rahmati, S ; Nikkhoo, M ; Haghpanahi, M ; Akbari, J ; Sharif University of Technology
    Springer  2020
    Abstract
    Due to the advent and maturity of the additive manufacturing technology, it is possible now to construct complex microstructures with unprecedented accuracy. In addition, to the influence of network unit cell types and porosities in recent years, researchers have studied the number of scaffold layers fabricated by additive manufacturing on mechanical properties. The objective of this paper is to assess the numerical and analytical simulations of the multilayer scaffolds. For this purpose, 54 different regular scaffolds with a unit cell composed of multilayer scaffolds were simulated under compressive loading and compared with the analytical relationships based on the Euler–Bernoulli and... 

    Integrating hydrodynamic and acoustic cell separation in a hybrid microfluidic device: a numerical analysis

    , Article Acta Mechanica ; Volume 233, Issue 5 , 2022 , Pages 1881-1894 ; 00015970 (ISSN) Ashkezari, A. H. K ; Dizani, M ; Shamloo, A ; Sharif University of Technology
    Springer  2022
    Abstract
    Cell separation microfluidic devices have evolved into a multitude of biomedical and clinical research. Nonetheless, many critical issues remain in the way of achieving an excellent separation of target cells from a heterogeneous sample. Parallel to the abundant experimental studies related to the hybrid microfluidic methods, it is easy to perceive the lack of numerical investigations in order to optimize the separation process and its accuracy. In this study, for the first time to the best of our knowledge, a hybrid system by integrating acoustophoresis and pinched-flow fractionation (PFF) is proposed to achieve a viable system for a wide-range, precise separation. Employing the ultrasound... 

    A modified PEG-Fe3O4 magnetic nanoparticles conjugated with D(+)GLUCOSAMINE (DG): mri contrast agent

    , Article Journal of Inorganic and Organometallic Polymers and Materials ; Volume 32, Issue 6 , 2022 , Pages 1988-1998 ; 15741443 (ISSN) Rezayan, A. H ; Kheirjou, S ; Edrisi, M ; Shafiee Ardestani, M ; Alvandi, H ; Sharif University of Technology
    Springer  2022
    Abstract
    Molecular imaging (MI) can provide not only structural images utilizing temporal imaging techniques, but also functional and molecular data using a variety of newly developed imaging techniques. Nanotechnology’s application in MI has commanded a lot of attention in recent decades, and it has provided tremendous potential for imaging living subjects. In this study, D-glucosamine conjugated functionalized magnetic iron oxide nanoparticles (Fe3O4-PEG-DG NPs) were prepared and studied as magnetic resonance imaging (MRI) contrast agents. To evaluate their distribution, single-photon emission computed tomography (SPECT) is performed. Fe3O4 NPs are made using a well-known co-precipitation process... 

    The influence of the female reproductive tract and sperm features on the design of microfluidic sperm-sorting devices

    , Article Journal of Assisted Reproduction and Genetics ; Volume 39, Issue 1 , 2022 , Pages 19-36 ; 10580468 (ISSN) Ahmadkhani, N ; Hosseini, M ; Saadatmand, M ; Abbaspourrad, A ; Sharif University of Technology
    Springer  2022
    Abstract
    Although medical advancements have successfully helped a lot of couples with their infertility by assisted reproductive technologies (ART), sperm selection, a crucial stage in ART, has remained challenging. Therefore, we aimed to investigate novel sperm separation methods, specifically microfluidic systems, as they do sperm selection based on sperm and/or the female reproductive tract (FRT) features without inflicting any damage to the selected sperm during the process. In this review, after an exhaustive studying of FRT features, which can implement by microfluidics devices, the focus was centered on sperm selection and investigation devices. During this study, we tried not to only point to... 

    The importance of fluid-structure interaction simulation for determining the mechanical stimuli of endothelial cells and atheroprone regions in a coronary bifurcation

    , Article Scientia Iranica ; Volume 23, Issue 1 , 2016 , Pages 228-237 ; 10263098 (ISSN) Pakravan, H. A ; Saidi, M. S ; Firoozabadi, B ; Sharif University of Technology
    Sharif University of Technology  2016
    Abstract
    The function and morphology of Endothelial Cells (ECs) play a key role in atherosclerosis. The mechanical stimuli of ECs, such as Wall Shear Stress (WSS) and arterial wall strain, greatly inuence the function and morphology of these cells. The present article deals with computations of these stimuli for a 3D model of a healthy coronary artery bifurcation. The focus of the study is to propose an accurate method for computations of WSS and strains. Two approaches are considered: Coupled simultaneous simulation of arterial wall and blood flow, called fluid-Structure Interaction (FSI) simulation, and decoupled, which simulates each domain (fluid and solid domain) separately. The study... 

    Modeling self-assembly of the surfactants into biological bilayer membranes with special chemical structures using dissipative particle dynamics method

    , Article Scientia Iranica ; Volume 23, Issue 3 , 2016 , Pages 942-950 ; 10263098 (ISSN) Yaghoubi, S ; Pishevar, A. R ; Saidi, M. S ; Shirani, E ; Sharif University of Technology
    Sharif University of Technology  2016
    Abstract
    The aim of this study is to simulate the self-assembly of the surfactant molecules with special chemical structure and bending stiffiness into bilayer membranes using a mesoscopic Dissipative Particle Dynamics (DPD) method. The surfactants are modeled with special chemical structure and bending stiffiness. To confirm that the novel model is physical, we determine the interaction parameters based on matching the compressibility and solubility of the DPD system with real physics of the uid. To match the mutual solubility for binary uids, we use the relation between DPD parameters and x-parameters in Flory-Huggins-type models. Unsaturated bonds can change the stiffiness of a lipid membrane,... 

    Comparison and optimization of conjugated linoleic acid production by Lactobacillus plantarum and Lactobacillus plantarum subsp. plantarum

    , Article Scientia Iranica ; Volume 24, Issue 3 , 2017 , Pages 1272-1280 ; 10263098 (ISSN) Kouchak Yazdi, Z ; Alemzadeh, I ; Vossoughi, M ; Sharif University of Technology
    Sharif University of Technology  2017
    Abstract
    Conjugated Linoleic Acid (CLA) was produced from castor oil using washed cells of Lactobacillus plantarum PTCC 1058 and Lactobacillus plantarum subsp. plantarum PTCC1745 as the catalyst. Under the optimal reaction conditions, the washed cells of Lactobacillus plantarum PTCC1058 produced 1661.26 mg of CLA/L reaction mixture (36% yield of production) from 4.6 mg/ml of castor oil after using 15% (w/v) cell for 121 h. The resulting CLA was a mixture of two CLA isomers, cis-9, trans-11 (or trans-9, cis-11)-octadecadienoic acid (CLA1, 44% of total CLA) and trans-10, cis-12-octadecadienoic acid (CLA2, 46% of total CLA). The total production of CLA is extracellular in all of the reactions performed... 

    Application of hyperelastic models in mechanical properties prediction of mouse oocyte and embryo cells at large deformations

    , Article Scientia Iranica ; Volume 25, Issue 2B , March , 2018 , Pages 700-710 ; 10263098 (ISSN) Abbasi, A. A ; Ahmadian, M. T ; Alizadeh, A ; Tarighi, S ; Sharif University of Technology
    Sharif University of Technology  2018
    Abstract
    Biological cell studies have many applications in biology, cell manipulation, and diagnosis of diseases such as cancer and malaria. In this study, Inverse Finite Element Method (IFEM) combined with Levenberg-Marquardt optimization algorithm has been used to extract and characterize material properties of mouse oocyte and embryo cells at large deformations. Then, the simulation results have been validated using data from experimental works. In this study, it is assumed that cell material is hyperelastic, isotropic, homogenous, and axisymmetric. For inverse analysis, FEM model of cell injection experiment implemented in Abaqus software has been coupled with Levenberg-Marquardt optimization... 

    A computational model for estimation of mechanical parameters in chemotactic endothelial cells

    , Article Scientia Iranica ; Volume 23, Issue 1 , 2016 , Pages 260-267 ; 10263098 (ISSN) Kiyoumarsioskouei, A ; Shamloo, A ; Azimi, S ; Abeddoust, M ; Saidi, M.S ; Sharif University of Technology
    Sharif University of Technology 
    Abstract
    A cell migration numerical simulation is presented to mimic the motility of endothelial cells subjected to the concentration gradients of a Forebrain embryoniccortical neuron Conditioned Medium (CM). This factor was previously shflown to induce the directional chemotaxis of endothelial cells with an over-expressed G protein coupled receptor 124 (GPR 124). A cell simulator program incorporates basic elements of the cell cytoskeleton, including membrane, nucleus and cytoskeleton. The developed 2D cell model is capable of responding to concentration gradients of biochemical factors by changing the cytoskeleton arrangement. Random walk force, cell drag force and cell inertial effects are also... 

    Biomechanical analysis of actin cytoskeleton function based on a spring network cell model

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 231, Issue 7 , 2017 , Pages 1308-1323 ; 09544062 (ISSN) Ghaffari, H ; Saidi, M. S ; Firoozabadi, B ; Sharif University of Technology
    SAGE Publications Ltd  2017
    Abstract
    In this study, a new method for the simulation of the time-dependent behavior of actin cytoskeleton during cell shape change is proposed. For this purpose, a three-dimensional model of endothelial cell consisting of cell membrane, nucleus membrane, and main components of cytoskeleton, namely actin filaments, microtubules, and intermediate filaments is utilized. Actin binding proteins, which play a key role in regulating actin cytoskeleton behavior, are also simulated by using a novel technique. The actin cytoskeleton in this model is more dynamic and adoptable during cell deformation in comparison to previous models. The proposed model is subjected to compressive force between parallel micro... 

    A portable culture chamber for studying the effects of hydrostatic pressure on cellular monolayers

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; 2018 ; 09544062 (ISSN) Kiyoumarsioskouei, A ; Saidi, M ; Mosadegh, B ; Firoozabadi, B ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    Hydrostatic pressure is one of the most fundamental and common mechanical stimuli in the body, playing a critical role in the homeostasis of all organ systems. Kidney function is affected by high blood pressure, namely hypertension, by the increased pressure acting on the glomerular capillary walls. This general effect of hypertension is diagnosed as a chronic disease, but underlying mechanistic causes are still not well understood. This paper reports a portable and adaptive device for studying the effects of hydrostatic pressure on a monolayer of cells. The fabricated device fits within a conventional incubation system and microscope. The effects of various pressures and durations were... 

    A portable culture chamber for studying the effects of hydrostatic pressure on cellular monolayers

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 233, Issue 3 , 2019 , Pages 807-816 ; 09544062 (ISSN) Kiyoumarsioskouei, A ; Saidi, M. S ; Mosadegh, B ; Firoozabadi, B ; Sharif University of Technology
    SAGE Publications Ltd  2019
    Abstract
    Hydrostatic pressure is one of the most fundamental and common mechanical stimuli in the body, playing a critical role in the homeostasis of all organ systems. Kidney function is affected by high blood pressure, namely hypertension, by the increased pressure acting on the glomerular capillary walls. This general effect of hypertension is diagnosed as a chronic disease, but underlying mechanistic causes are still not well understood. This paper reports a portable and adaptive device for studying the effects of hydrostatic pressure on a monolayer of cells. The fabricated device fits within a conventional incubation system and microscope. The effects of various pressures and durations were... 

    Cell "vision": Complementary factor of protein corona in nanotoxicology

    , Article Nanoscale ; Volume 4, Issue 17 , 2012 , Pages 5461-5468 ; 20403364 (ISSN) Mahmoudi, M ; Saeedi-Eslami, S. N ; Shokrgozar, M. A ; Azadmanesh, K ; Hassanlou, M ; Kalhor, H. R ; Burtea, C ; Rothen Rutishauser, B ; Laurent, S ; Sheibani, S ; Vali, H ; Sharif University of Technology
    RSC  2012
    Abstract
    Engineered nanoparticles are increasingly being considered for use as biosensors, imaging agents and drug delivery vehicles. Their versatility in design and applications make them an attractive proposition for new biological and biomedical approaches. Despite the remarkable speed of development in nanoscience, relatively little is known about the interaction of nanoscale objects with living systems. In a biological fluid, proteins associate with nanoparticles, and the amount and the presentation of the proteins on their surface could lead to a different in vivo response than an uncoated particle. Here, in addition to protein adsorption, we are going to introduce concept of cell "vision",... 

    The effect of the physical properties of the substrate on the kinetics of cell adhesion and crawling studied by an axisymmetric diffusion-energy balance coupled model

    , Article Soft Matter ; Volume 11, Issue 18 , Mar , 2015 , Pages 3693-3705 ; 1744683X (ISSN) Samadi Dooki, A ; Shodja, H. M ; Malekmotiei, L ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    In this paper an analytical approach to study the effect of the substrate physical properties on the kinetics of adhesion and motility behavior of cells is presented. Cell adhesion is mediated by the binding of cell wall receptors and substrate's complementary ligands, and tight adhesion is accomplished by the recruitment of the cell wall binders to the adhesion zone. The binders' movement is modeled as their axisymmetric diffusion in the fluid-like cell membrane. In order to preserve the thermodynamic consistency, the energy balance for the cell-substrate interaction is imposed on the diffusion equation. Solving the axisymmetric diffusion-energy balance coupled equations, it turns out that...