Loading...
Search for: eigenvalues-and-eigenfunctions
0.011 seconds

    Connectedness of users-items networks and recommender systems

    , Article Applied Mathematics and Computation ; Vol. 243 , 2014 , Pages 578-584 ; ISSN: 00963003 Gharibshah, J ; Jalili, M ; Sharif University of Technology
    Abstract
    Recommender systems have become an important issue in network science. Collaborative filtering and its variants are the most widely used approaches for building recommender systems, which have received great attention in both academia and industry. In this paper, we studied the relationship between recommender systems and connectivity of users-items bipartite network. This results in a novel recommendation algorithm. In our method recommended items are selected based on the eigenvector corresponding to the algebraic connectivity of the graph - the second smallest eigenvalue of the Laplacian matrix. Since recommending an item to a user equals to adding a new link to the users-items bipartite... 

    Computing all the Floquet eigenfunctions of oscillators using harmonic balance Jacobian matrices

    , Article IET Circuits, Devices and Systems ; Volume 5, Issue 4 , July , 2011 , Pages 257-266 ; 1751858X (ISSN) Jahanbakht, S ; Farzaneh, F ; Sharif University of Technology
    2011
    Abstract
    Floquet eigenfunctions and Floquet exponents are encountered in stability and noise analysis of circuits operating at large signal periodic regime. It is analytically verified that the spectrum vectors of the left-hand and right-hand Floquet eigenfunctions and the Floquet exponents (Floquet eigenpairs) are members of the harmonic balance eigenvalues and eigenvectors (HB eigenpairs). The relationships between other HB eigenpairs with the Floquet eigenpairs are discussed. This discussion leads to a practical algorithm for computing the Floquet eigenpairs through HB eigenpairs. Furthermore, it is analytically verified that the main arguments of the study are consistent with the... 

    Composite pnlms & nlms adaptation: A new method for network echo cancellation

    , Article 14th International Conference on Digital Signal Processing, DSP 2002, 1 July 2002 through 3 July 2002 ; Volume 2 , 2002 , Pages 757-760 ; 0780375033 (ISBN) Nekuii, M ; Atarodi, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2002
    Abstract
    This paper describes an improved version of the recently proposed fast converging algorithm. PNLMS, for network echo cancellers. We have introduced a simple analysis of the PNLMS convergence behavior to show why after the fast initial convergence, it slows down. Also, the method has been worked out to overcome this deficiency is presented. Improvement is shown by several simulation results. © 2002 IEEE  

    Complex modal analysis and coupled electromechanical simulation of energy harvesting piezoelectric laminated beams

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; 2018 ; 09544062 (ISSN) Pasharavesh, A ; Ahmadian, M. T ; Zohoor, H ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    In this paper, coupled electromechanical behavior of a vibrational energy harvesting system composed of a unimorph piezoelectric laminated beam with a large attached tip mass is investigated. To achieve this goal, first the electromechanically coupled partial differential equations governing the lateral displacement and output voltage of the harvester are extracted through exploiting the Hamilton’s principle. Considering vibration damping due to mechanical to electrical energy conversion, a complex modal analysis is performed to extract the complex eigenfrequencies and eigenfunctions of the system. Furthermore, an exact analytical solution is presented for the system response to the harmonic... 

    Complex modal analysis and coupled electromechanical simulation of energy harvesting piezoelectric laminated beams

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 233, Issue 7 , 2019 , Pages 2526-2537 ; 09544062 (ISSN) Pasharavesh, A ; Ahmadian, M. T ; Zohoor, H ; Sharif University of Technology
    SAGE Publications Ltd  2019
    Abstract
    In this paper, coupled electromechanical behavior of a vibrational energy harvesting system composed of a unimorph piezoelectric laminated beam with a large attached tip mass is investigated. To achieve this goal, first the electromechanically coupled partial differential equations governing the lateral displacement and output voltage of the harvester are extracted through exploiting the Hamilton’s principle. Considering vibration damping due to mechanical to electrical energy conversion, a complex modal analysis is performed to extract the complex eigenfrequencies and eigenfunctions of the system. Furthermore, an exact analytical solution is presented for the system response to the harmonic... 

    Color PCA eigenimages and their application to compression and watermarking

    , Article Image and Vision Computing ; Volume 26, Issue 7 , 2008 , Pages 878-890 ; 02628856 (ISSN) Abadpour, A ; Kasaei, S ; Sharif University of Technology
    Elsevier Ltd  2008
    Abstract
    From the birth of multi-spectral imaging techniques, there has been a tendency to consider and process this new type of data as a set of parallel gray-scale images, instead of an ensemble of an n-D realization. However, it has been proved that using vector-based tools leads to a more appropriate understanding of color images and thus more efficient algorithms for processing them. Such tools are able to take into consideration the high correlation of the color components and thus to successfully carry out energy compaction. In this paper, a novel method is proposed to utilize the principal component analysis in the neighborhoods of an image in order to extract the corresponding eigenimages.... 

    Collective dynamics of interacting particles in unsteady flows

    , Article SIAM Journal on Applied Dynamical Systems ; Vol. 13, Issue. 1 , 2014 , pp. 194-209 ; ISSN: 15360040 Abedi, M ; Jalali, M. A ; Sharif University of Technology
    Abstract
    We use the Fokker-Planck equation and its moment equations to study the collective behavior of interacting particles in unsteady one-dimensional flows. Particles interact according to a longrange attractive and a short-range repulsive potential field known as Morse potential. We assume Stokesian drag force between particles and their carrier fluid and find analytic single-peaked traveling solutions for the spatial density of particles in the catastrophic phase. In steady flow conditions the streaming velocity of particles is identical to their carrier fluid, but we show that particle streaming is asynchronous with an unsteady carrier fluid. Using linear perturbation analysis, the stability... 

    Characterization of two-qubit perfect entanglers

    , Article Physical Review A - Atomic, Molecular, and Optical Physics ; Volume 70, Issue 5 A , 2004 , Pages 052313-1-052313-9 ; 10502947 (ISSN) Rezakhani, A. T ; Sharif University of Technology
    2004
    Abstract
    The problem of the characterization of perfect entanglers was investigated. Perfect entanglers have been defined as unitary operators that can generate maximally entangled states from some suitably chosen separable states. Some well defined tools have also been used to measure the entangling properties of quantum operators and two-qubit states. It was found that such tools help to analyze perfect entanglers and also have the unique property of maximally entangling a complete set of orthonormal product vectors. The results show that the qubit gates provided minimum universal gate construction and two of them were necessary and sufficient in implementation of a generic two-qubit gate  

    Buckling of the composite cracked cylindrical shells subjected to axial load

    , Article 2003 ASME International Mechanical Engineering Congress, Washington, DC, 15 November 2003 through 21 November 2003 ; Volume 470 , 2003 , Pages 87-93 ; 0277027X (ISSN) Vaziri, A ; Nayeb Hashemi, H ; Estekanchi, H. E ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2003
    Abstract
    Cylindrical shells constitute the main structural components in pressure vessels and pipelines. Cylindrical shells made of fiber-reinforced composites are now being considered in the design of many components due to their high specific strength and stiffness. Buckling is one of the main failure considerations, when designing the cylindrical shells. The buckling behavior of the composite cylindrical shells can severely be compromised by introducing defect in the structure, due to high stress field generated around these defects. Defects could be generated during service due to cyclic loading or during manufacturing. A reliable operation of these structures require to understand the effects of... 

    Buckling of cracked cylindrical thin shells under combined internal pressure and axial compression

    , Article Thin-Walled Structures ; Volume 44, Issue 2 , 2006 , Pages 141-151 ; 02638231 (ISSN) Vaziri, A ; Estekanchi, H. E ; Sharif University of Technology
    2006
    Abstract
    Linear eigenvalue analysis of cracked cylindrical shells under combined internal pressure and axial compression is carried out to study the effect of crack type, size and orientation on the buckling behavior of cylindrical thin shells. Two types of crack are considered; through crack and thumbnail crack. Our calculations indicate that depending on the crack type, length, orientation and the internal pressure, local buckling may precede the global buckling of the cylindrical shell. The internal pressure, in general, increases the buckling load associated with the global buckling mode of the cylindrical shells. In contrast, the effect of internal pressure on buckling loads associated with the... 

    Bridged single-walled carbon nanotube-based atomic-scale mass sensors

    , Article Applied Physics A: Materials Science and Processing ; Volume 122, Issue 8 , Volume 122, Issue 8 , 2016 ; 09478396 (ISSN) Ali Akbari, H. R ; Shaat, M ; Abdelkefi, A ; Sharif University of Technology
    Springer Verlag 
    Abstract
    The potentials of carbon nanotubes (CNTs) as mechanical resonators for atomic-scale mass sensing are presented. To this aim, a nonlocal continuum-based model is proposed to study the dynamic behavior of bridged single-walled carbon nanotube-based mass nanosensors. The carbon nanotube (CNT) is considered as an elastic Euler–Bernoulli beam with von Kármán type geometric nonlinearity. Eringen’s nonlocal elastic field theory is utilized to model the interatomic long-range interactions within the structure of the CNT. This developed model accounts for the arbitrary position of the deposited atomic-mass. The natural frequencies and associated mode shapes are determined based on an eigenvalue... 

    Bending-torsional stability analysis of aerodynamically covered pipes with inclined terminal nozzle and concurrent internal and external flows

    , Article Journal of Fluids and Structures ; Volume 94 , 2020 Askarian, A. R ; Rahmanian, M ; Haddadpour, H ; Dehghani Firouz Abadi, R ; Sharif University of Technology
    Academic Press  2020
    Abstract
    Stability analysis of a cantilevered pipe with an inclined terminal nozzle as well as simultaneous internal and external fluid flows is investigated in this study. The pipe is embedded in an aerodynamic cover with negligible mass and stiffness simply to streamline the external flow and avoid vortex induced vibrations. The structure of pipe is modeled as an Euler–Bernoulli beam and effects of internal fluid flow including flow-induced inertia, Coriolis and centrifugal forces and the follower force induced by the exhausting jet are taken into account. In addition, neglecting the compressibility effect and using the unsteady Wagner model, aerodynamic loading is determined as a distributed... 

    Bending-torsional flutter of a cantilevered pipe conveying fluid with an inclined terminal nozzle

    , Article Journal of Sound and Vibration ; Volume 332, Issue 12 , 2013 , Pages 3002-3014 ; 0022460X (ISSN) Firouz Abadi, R. D ; Askarian, A. R ; Kheiri, M ; Sharif University of Technology
    2013
    Abstract
    Stability analysis of a horizontal cantilevered pipe conveying fluid with an inclined terminal nozzle is considered in this paper. The pipe is modelled as a cantilevered Euler-Bernoulli beam, and the flow-induced inertia, Coriolis and centrifugal forces along the pipe as well as the follower force induced by the jet-flow are taken into account. The governing equations of the coupled bending-torsional vibrations of the pipe are obtained using extended Hamilton's principle and are then discretized via the Galerkin method. The resulting eigenvalue problem is then solved, and several cases are examined to determine the effect of nozzle inclination angle, nozzle aspect ratio, mass ratio and... 

    Axial-torsional vibrations of rotating pretwisted thin walled composite beams

    , Article International Journal of Mechanical Sciences ; Vol. 80 , 2014 , pp. 93-101 ; ISSN: 00207403 Sina, S. A ; Haddadpour, H ; Sharif University of Technology
    Abstract
    Axial-torsional vibrations of rotating pretwisted thin-walled composite box beams exhibiting primary and secondary warping are investigated. Considering the nonlinear strain-displacement relations, the coupled nonlinear axial-torsional equations of motion are derived using Hamilton's principle. Ignoring the axial inertia term leads to differential equation of motion in terms of elastic torsion in the case of axially immovable beams. Centrifugal load in the presence of material anisotropy and pretwist angle leads to an induced static torque. The nonlinear equation should be linearized about the corresponding equilibrium state to obtain the linear differential equation of motion. Extended... 

    A VLSI architecture for multiple antenna eigenvalue-based spectrum sensing

    , Article 2012 19th IEEE International Conference on Electronics, Circuits, and Systems, ICECS 2012, 9 December 2012 through 12 December 2012 ; December , 2012 , Pages 153-156 ; 9781467312615 (ISBN) Safavi, S. M ; Shabany, M ; Sharif University of Technology
    2012
    Abstract
    An Eigenvalue-based detection (EBD) scheme, is proposed as an efficient method to overcome the noise uncertainty and the SNR wall problem in conventional energy detection (ED) schemes. Despite remarkable efforts made to analyze the EBD performance, a VLSI implementation is missing in literature. In this paper, a new FFT-based EBD algorithm is introduced, which eliminates the need for filter banks and discrete wavelet packet transform to channelize the input signal. The proposed method enables the utilization of the EBD algorithm in high-resolution spectrum sensing approaches. Moreover, it enables the detection of signals with SNRs as low as -10 dB. A low-power, area-efficient yet real-time... 

    A successive boundary element model for investigation of sloshing frequencies in axisymmetric multi baffled containers

    , Article Engineering Analysis with Boundary Elements ; Volume 37, Issue 2 , 2013 , Pages 383-392 ; 09557997 (ISSN) Ebrahimian, M ; Noorian, M. A ; Haddadpour, H ; Sharif University of Technology
    2013
    Abstract
    This study presents a developed successive Boundary Element Method to determine the symmetric and antisymmetric sloshing natural frequencies and mode shapes for multi baffled axisymmetric containers with arbitrary geometries. The developed fluid model is based on the Laplace equation and Green's theorem. The governing equations of fluid dynamic and free surface boundary condition are also applied to proposed model. A zoning method is presented to model arbitrary arrangement of baffles in multi baffled axisymmetric tanks. The influence of each zone on neighboring zones is applied by introducing interface influence matrix which correlates the velocity potential of interfaces to their flux. By... 

    Assessment study of shunt FACTS devices for improving dynamic behavior of induction motors

    , Article Sixth International Conference on Power Electronics and Drive Systems, PEDS 2005, Kualu Lumpur, 28 November 2005 through 1 December 2005 ; Volume 2 , 2005 , Pages 1352-1355 ; 0780392965 (ISBN); 9780780392960 (ISBN) Hedayati, M ; Oraee, H ; Sharif University of Technology
    2005
    Abstract
    An assessment study of two different shunt FACTS devices for compensating disturbances due to voltage variation in power systems is presented in this paper. Namely, Static Compensator (STATCOM) and Static Var Compensator (SVC) are Considered in this study. Eigen Value analysis and nonlinear time domain simulations for starting motor, motor in load varying state and short circuit on motor terminals show that STATCOM DC Voltage regulation has a better performance Compared to that of SVC. The result that will be presented in the paper will prove the superiorly of STATCOM over SVC in increasing motor speeding up and improving system voltage profile particularly at starting. © 2005 IEEE  

    Assessment of three preconditioning schemes for solution of the two-dimensional Euler equations at low Mach number flows

    , Article International Journal for Numerical Methods in Engineering ; Volume 89, Issue 1 , 2012 , Pages 20-52 ; 00295981 (ISSN) Hejranfar, K ; Kamali Moghadam, R ; Sharif University of Technology
    Abstract
    Three preconditioners proposed by Eriksson, Choi and Merkel, and Turkel are implemented in a 2D upwind Euler flow solver on unstructured meshes. The mathematical formulations of these preconditioning schemes for different sets of primitive variables are drawn, and their eigenvalues and eigenvectors are compared with each other. For this purpose, these preconditioning schemes are expressed in a unified formulation. A cell-centered finite volume Roe's method is used for the discretization of the preconditioned Euler equations. The accuracy and performance of these preconditioning schemes are examined by computing steady low Mach number flows over a NACA0012 airfoil and a two-element... 

    A shell model for free vibration analysis of carbon nanoscroll

    , Article Materials ; Volume 10, Issue 4 , 2017 ; 19961944 (ISSN) Taraghi Osguei, A ; Ahmadian, M. T ; Asghari, M ; Pugno, N. M ; Sharif University of Technology
    Abstract
    Carbon nanoscroll (CNS) is a graphene sheet rolled into a spiral structure with great potential for different applications in nanotechnology. In this paper, an equivalent open shell model is presented to study the vibration behavior of a CNS with arbitrary boundary conditions. The equivalent parameters used for modeling the carbon nanotubes are implemented to simulate the CNS. The interactions between the layers of CNS due to van der Waals forces are included in the model. The uniformly distributed translational and torsional springs along the boundaries are considered to achieve a unified solution for different boundary conditions. To study the vibration characteristics of CNS, total energy... 

    A screw dislocation near a damaged arbitrary inhomogeneity–matrix interface

    , Article International Journal of Damage Mechanics ; Volume 29, Issue 2 , 2020 , Pages 272-296 Kamali, M. T ; Shodja, H. M ; Masoudvaziri, N ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    In the literature, the analytical solutions concerned with the interaction between screw dislocation and surfaces/interfaces have been mainly limited to simple geometries and perfect interfaces. The focus of the current work is to provide an approach based on a rigorous semi-analytical theory suitable for treatment of such surfaces/interfaces that concurrently have complex geometry and imperfect bonding. The proposed approach captures the singularity of the elastic fields exactly. A vast variety of the pertinent interaction problems such as dislocation near a multi-inhomogeneity with arbitrary geometry bonded imperfectly to a matrix, dislocation near the free boundaries of a finite elastic...