Loading...
Search for: elasticity
0.017 seconds
Total 953 records

    Variational principles for stability analysis of multi-walled carbon nanotubes based on a nonlocal elastic shell model

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, Istanbul, 12 July 2010 through 14 July 2010 ; Volume 5 , 2010 , Pages 591-598 ; 9780791849194 (ISBN) Asghari, M ; Rafati, J ; Sharif University of Technology
    2010
    Abstract
    The nonlocal continuum theories are capable to reflect the small length characteristic of nanostructures. In this work, variational principles are presented for the stability analysis of multi-walled carbon nanotubes under various mechanical loadings based on the nonlocal elastic Donnell's shell by the semi-inverse method. In this manner, a set of proper essential and natural boundary conditions for each layer of the multi-walled nanotube is derived  

    On the size-dependent behavior of functionally graded micro-beams

    , Article Materials and Design ; Volume 31, Issue 5 , May , 2010 , Pages 2324-2329 ; 02641275 (ISSN) Asghari, M ; Ahmadian, M. T ; Kahrobaiyan, M. H ; Rahaeifard, M ; Sharif University of Technology
    2010
    Abstract
    In this paper, the size-dependent static and vibration behavior of micro-beams made of functionally graded materials (FGMs) are analytically investigated on the basis of the modified couple stress theory in the elastic range. Functionally graded beams can be considered as inhomogeneous composite structures, with continuously compositional variation from usually a ceramic at the bottom to a metal at the top. The governing equations of motion and boundary conditions are derived on the basis of Hamilton principle. Closed-form solutions for the normalized static deflection and natural frequencies are obtained as a function of the ratio of the beam characteristic size to the internal material... 

    A three-dimensional elasticity solution for functionally graded rotating disks

    , Article Composite Structures ; Volume 92, Issue 5 , 2010 , Pages 1092-1099 ; 02638223 (ISSN) Asghari, M ; Ghafoori, E ; Sharif University of Technology
    2010
    Abstract
    A semi-analytical three-dimensional elasticity solution for rotating functionally graded disks for both of hollow and solid disks is presented. The aim is to generalize an available two-dimensional plane-stress solution to a three-dimensional one. Although for the thin disks problems the two-dimensional solution provides appropriate results, for the thick disks, a three-dimensional elasticity solution should be considered to avoid poor results. It is shown that although the plane-stress solution satisfies all the governing three-dimensional equations of motion and boundary conditions, it fails to give a compatible three-dimensional strain field. A valid three-dimensional solution has been... 

    Basis free expressions for the stress rate of isotropic elastic materials in the cases of coalescent principal stretches

    , Article International Journal of Solids and Structures ; Volume 47, Issue 5 , 2010 , Pages 611-613 ; 00207683 (ISSN) Asghari, M ; Sharif University of Technology
    2010
    Abstract
    In this paper, some basis-free expressions for the material time derivative of Lagrangian stress tensors are presented which are generally valid in all cases of coalescent principal stretches. The material is assumed to be elastic and isotropic  

    Two-dimensional modeling of functionally graded viscoelastic materials using a boundary element approach

    , Article Advanced Materials Research, 7 January 2012 through 8 January 2012 ; Volume 463-464 , January , 2012 , Pages 570-574 ; 10226680 (ISSN) ; 9783037853634 (ISBN) Ashrafi, H ; Bahadori, M. R ; Shariyat, M ; Sharif University of Technology
    Abstract
    In this paper, a 2D boundary element approach able to model viscoelastic functionally graded materials (FGM) is presented. A numerical implementation of the Somigliana identity for displacements is developed to solve 2D problems of exponentially graded elasticity. An FGM is an advanced material in which its composition changes gradually resulting in a corresponding change in properties of the material. The FGM concept can be applied to various materials for structural and functional uses. Our model needs only the Green's function of nonhomogeneous elastostatic problems with material properties that vary continuously along a given dimension. We consider the material properties to be an... 

    A 3-D constitutive model for pressure-dependent phase transformation of porous shape memory alloys

    , Article Journal of the Mechanical Behavior of Biomedical Materials ; Volume 42 , 2015 , Pages 292-310 ; 17516161 (ISSN) Ashrafi, M. J ; Arghavani, J ; Naghdabadi, R ; Sohrabpour, S ; Sharif University of Technology
    Abstract
    Porous shape memory alloys (SMAs) exhibit the interesting characteristics of porous metals together with shape memory effect and pseudo-elasticity of SMAs that make them appropriate for biomedical applications. In this paper, a 3-D phenomenological constitutive model for the pseudo-elastic behavior and shape memory effect of porous SMAs is developed within the framework of irreversible thermodynamics. Comparing to micromechanical and computational models, the proposed model is computationally cost effective and predicts the behavior of porous SMAs under proportional and non-proportional multiaxial loadings. Considering the pressure dependency of phase transformation in porous SMAs, proper... 

    Dynamic instability of cantilevered composite pipe conveying flow with an end nozzle

    , Article 21st International Congress on Sound and Vibration 2014, ICSV 2014 ; Vol. 4, issue , 13- 17 July , 2014 , pp. 3564-3571 ; ISBN: 9781634392389 Askarian, A ; Abtahi, H ; Haddadpour, H ; Sharif University of Technology
    Abstract
    In this paper, the instability of cantilevered horizontal composite pipes is investigated. To this aim, the lateral flow forces are modelled as a distributed lateral force and the nozzle effect is modelled as a compressive axial follower force and a concentrated end mass. The coupled bending-torsional equations of motion are derived using Hamilton's principal and Galerkin method. In order to obtain the stability margin of the pipe, the standard Eigen value problem is solved. Finally, effects of elastic coupling parameter and nozzle aspect ratio are considered on the stability margin of the pipe and some conclusions are drawn  

    Bending-torsional instability of a viscoelastic cantilevered pipe conveying pulsating fluid with an inclined terminal nozzle

    , Article Journal of Mechanical Science and Technology ; Volume 32, Issue 7 , July , 2018 , Pages 2999-3008 ; 1738494X (ISSN) Askarian, A. R ; Abtahi, H ; Firouz Abadi, R. D ; Haddadpour, H ; Dowell, E. H ; Sharif University of Technology
    Korean Society of Mechanical Engineers  2018
    Abstract
    In the present study, dynamic stability of a viscoelastic cantilevered pipe conveying fluid which fluctuates harmonically about a mean flow velocity is considered; while the fluid flow is exhausted through an inclined end nozzle. The Euler-Bernoulli beam theory is used to model the pipe and fluid flow effects are modelled as a distributed load along the pipe which contains the inertia, Coriolis, centrifugal and induced pulsating fluid flow forces. Moreover, the end nozzle is modelled as a follower force which couples bending vibrations with torsional ones. The extended Hamilton's principle and the Galerkin method are used to derive the bending-torsional equations of motion. The coupled... 

    The effect of normal stress on hydro-mechanical deep drawing process

    , Article International Journal of Mechanical Sciences ; Volume 53, Issue 6 , 2011 , Pages 407-416 ; 00207403 (ISSN) Assempour, A ; Taghipour, E ; Sharif University of Technology
    2011
    Abstract
    Normal stress has some role in the deformation analysis of hydroforming processes. In this study, analytical modeling is pursued to evaluate the effect of normal stress on the hydro-mechanical deep drawing (HDD) process. Analyses are carried out for axisymmetric elements of the formed cup-shaped part for increments of the punch travel. The formulations are obtained using mechanical and geometrical relations and the finite difference method, thereby being solved by proper numerical algorithms. Furthermore, in the present work, part thickness is variable, the loading and straining are non-proportional, and bending/unbending effects over the part curvature are considered. The results show that... 

    Coreless self-centering braces as retrofitting devices in steel structures

    , Article Journal of Constructional Steel Research ; Volume 133 , 2017 , Pages 485-498 ; 0143974X (ISSN) Attari Dezfuli, M ; Dolatshahi, K. M ; Mofid, M ; Sadeghi Eshkevari, S ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Conventional lateral resisting systems can provide sufficient strength and ductility for design based earthquakes, although the considerable residual deformation remaining in the plasticized regions undermines the resiliency of the structures. In order to resolve this problem, various self-centering systems have been proposed and tested in recent years, most of which are specified for new buildings and are not simply suitable for retrofitting applications. Moreover, the available self-centering systems are costly and complex to assemble, which can be considered as a serious barrier for practical application. To address these drawbacks, an innovative Core-Less Self-Centering (CLSC) brace is... 

    Effective behavior of porous elastomers containing aligned spheroidal voids

    , Article Acta Mechanica ; Volume 224, Issue 9 , September , 2013 , Pages 1901-1915 ; 00015970 (ISSN) Avazmohammadi, R ; Naghdabadi, R ; Sharif University of Technology
    2013
    Abstract
    The theoretical need to recognize the link between the basic microstructure of nonlinear porous materials and their macroscopic mechanical behavior is continuously rising owing to the existing engineering applications. In this regard, a semi-analytical homogenization model is proposed to establish an overall, continuum-level constitutive law for nonlinear elastic materials containing prolate/oblate spheroidal voids undergoing finite axisymmetric deformations. The microgeometry of the porous materials is taken to be voided spheroid assemblage consisting of confocally voided spheroids of all sizes having the same orientation. Following a kinematically admissible deformation field for a... 

    Ellipsoidal domain with piecewise nonuniform eigenstrain field in one of joined isotropic half-spaces

    , Article Journal of Elasticity ; Volume 98, Issue 2 , 2010 , Pages 117-140 ; 03743535 (ISSN) Avazmohammadi, R ; Hashemi, R ; Shodja, H. M ; Kargarnovin, M. H ; Sharif University of Technology
    2010
    Abstract
    Consider an arbitrarily oriented ellipsoidal domain near the interface of an isotropic bimaterial space. It is assumed that a general class of piecewise nonuniform dilatational eigenstrain field is distributed within the ellipsoidal domain. Two theorems relevant to prediction of the nature of the induced displacement field for the interior and exterior points of the ellipsoidal domain are stated and proved. As a resultant the exact analytical expression of the elastic fields are obtained rigorously. In this work a new Eshelby-like tensor, A is introduced. In particular, the closed-form expressions for A associated with the interior points of spherical and cylindrical inclusion are derived.... 

    Strain energy-based homogenization of nonlinear elastic particulate composites

    , Article International Journal of Engineering Science ; Volume 47, Issue 10 , 2009 , Pages 1038-1048 ; 00207225 (ISSN) Avazmohammadi, R ; Naghdabadi, R ; Sharif University of Technology
    2009
    Abstract
    The macroscopic constitutive law for a heterogeneous solid containing two dissimilar nonlinear elastic phases undergoing finite deformation is obtained. Attention is restricted to the case of spherical symmetry such that only the materials consisting of an irregular suspension of perfectly spherical particles experiencing all-round uniform loading are considered which leads to a one-dimensional modeling. For the homogenization procedure, a strain-energy based scheme which utilizes Hashin's composite sphere is employed to obtain the macroscopic stress-deformation relation added by the initial volume fraction of the particles. As applications of the procedure, the closed-form macroscopic... 

    Finite anti-plane shear deformation of nonlinear elastic composites reinforced with elliptic fibers

    , Article Mechanics of Materials ; Volume 41, Issue 7 , 2009 , Pages 868-877 ; 01676636 (ISSN) Avazmohammadi, R ; Naghdabadi, R ; Weng, G. J ; Sharif University of Technology
    2009
    Abstract
    Exact solutions for nonlinear composites undergoing finite deformation are in general difficult to find. In this article, such a solution is obtained for a two-phase composite reinforced with elliptic fibers under anti-plane shear. The analysis is based on the theory of hyperelasticity with both phases characterized by incompressible neo-Hookean strain energies, and is carried out when the composite elliptic cylinder assemblage carries a confocal microgeometry. The problem for a class of compressible neo-Hookean materials is also studied. The analytical results for the stress and strain distributions are verified with finite element calculations where excellent agreement is found. We then... 

    Effect of interface stresses on the elastic deformation of an elastic half-plane containing an elastic inclusion

    , Article International Journal of Solids and Structures ; Volume 46, Issue 14-15 , 2009 , Pages 2897-2906 ; 00207683 (ISSN) Avazmohammadi, R ; Yang, F ; Abbasion, S ; Sharif University of Technology
    2009
    Abstract
    The effect of the interface stresses is studied upon the size-dependent elastic deformation of an elastic half-plane having a cylindrical inclusion with distinct elastic properties. The elastic half-plane is subjected to either a uniaxial loading at infinity or a uniform non-shear eigenstrain in the inclusion. The straight edge of the half-plane is either traction-free, or rigid-slip, or motionless, which represents three practical situations of mechanical structures. Using two-dimensional Papkovich-Neuber potentials and the theory of surface/interface elasticity, the elastic field in the elastic half-plane is obtained. Comparable with classical result, the new formulation renders the... 

    Nonlinear thermoelastic stress analysis of the rotating FGM disk with variable thickness and temperature-dependent material properties using finite element method

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings, 13 November 2009 through 19 November 2009 ; Volume 14 , 2010 , Pages 359-364 ; 9780791843871 (ISBN) Azadi, M ; Damircheli, M ; Sharif University of Technology
    Abstract
    In this paper, nonlinear radial and hoop thermoelastic stress analysis of rotating disk made of functionally graded material (FGM) with variable thickness is carried out by using the finite element method. In this method, one-dimensional second order elements with three nodes have been used. The geometrical and boundary conditions are in the shape of nonexistence of the pressure (zero radial stress) in both external and internal layers and zero displacement at the internal layer of rotating disk. Furthermore, it's assumed that heat distribution is as second order curve while material properties such as elasticity modulus, Poisson's ratio and thermal expansion coefficient vary by using a... 

    Modification of bacterial cellulose/keratin nanofibrous mats by a tragacanth gum-conjugated hydrogel for wound healing

    , Article International Journal of Biological Macromolecules ; Volume 134 , 2019 , Pages 280-289 ; 01418130 (ISSN) Azarniya, A ; Tamjid, E ; Eslahi, N ; Simchi, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    To enhance physicomechanical properties and bioactivity of fibrous membranes for wound dressing and tissue engineering applications, novel composite scaffolds consisting of fibrous mats and thermosensitive hydrogel particles were prepared by concurrent electrospinning and electrospraying technique. The composite scaffolds were composed of keratin/bacterial cellulose fibers (150 ± 43 nm) which are hybridized with hydrogel particles (500 nm to 2 μm) based on nonionic triblock copolymers conjugated with Tragacanth gum (TG). FTIR and H-NMR studies indicated ester reactions between carboxylated copolymers and TG through carbodiimide crosslinker chemistry. The hydrogel particles were uniformly... 

    Investigation of Mesh Sensitivity Influence to Determine Crack Characteristic by Finite Element Methods

    , Article Journal of Failure Analysis and Prevention ; Volume 16, Issue 3 , 2016 , Pages 506-512 ; 15477029 (ISSN) Azimi, M ; Mirjavadi, S. S ; Asli, S. A ; Sharif University of Technology
    Springer New York LLC 
    Abstract
    In this research, an extended finite element model has been investigated. Investigation of opening and closure stress always has been one of the difficult parameters to analysis of results; therefore, the utilization of finite element methods would be a good and logical alternative for this purpose. In addition, linear elastic fracture criteria are used for validation of numerical results from the simulation. In this work, a detailed analysis of the influence of different parameters in the results of a specific specimen with a semi-elliptical tooling groove in terms of closure and opening stress is presented, and the impact of optimum element size in fracture characteristic in various load... 

    Vibration of rotating functionally graded timoshenko nano-beams with nonlinear thermal distribution

    , Article Mechanics of Advanced Materials and Structures ; 2017 , Pages 1-14 ; 15376494 (ISSN) Azimi, M ; Mirjavadi, S. S ; Shafiei, N ; Hamouda, A. M. S ; Davari, E ; Sharif University of Technology
    Abstract
    The vibration analysis of rotating, functionally graded Timoshenko nano-beams under an in-plane nonlinear thermal loading is studied for the first time. The formulation is based on Eringen's nonlocal elasticity theory. Hamilton's principle is used for the derivation of the equations. The governing equations are solved by the differential quadrature method. The nano-beam is under axial load due to the rotation and thermal effects, and the boundary conditions are considered as cantilever and propped cantilever. The thermal distribution is considered to be nonlinear and material properties are temperature-dependent and are changing continuously through the thickness according to the power-law... 

    Vibration of rotating functionally graded timoshenko nano-beams with nonlinear thermal distribution

    , Article Mechanics of Advanced Materials and Structures ; Volume 25, Issue 6 , 2018 , Pages 467-480 ; 15376494 (ISSN) Azimi, M ; Mirjavadi, S ; Shafiei, N ; Salem Hamouda, A. M ; Davari, E ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    The vibration analysis of rotating, functionally graded Timoshenko nano-beams under an in-plane nonlinear thermal loading is studied for the first time. The formulation is based on Eringen's nonlocal elasticity theory. Hamilton's principle is used for the derivation of the equations. The governing equations are solved by the differential quadrature method. The nano-beam is under axial load due to the rotation and thermal effects, and the boundary conditions are considered as cantilever and propped cantilever. The thermal distribution is considered to be nonlinear and material properties are temperature-dependent and are changing continuously through the thickness according to the power-law...